CHAPTER B

Lie Theory and

Hypergeometric Functions

With respect to a suitable basis, the matrix elements of irreducible
representations of %(1, 0) =~ s/(2) @ (&) can be expressed in terms of
hypergeometric functions. In Sections 5-1 to 5-7 these matrix elements
will be computed and employed to derive identities and differential
relations for the hypergeometric functions. Sections 5-8 to 5-15 are
devoted to the realization of irreducible representations of s/(2) in terms
of type A and type B differential operators. It will be shown that the most
general hypergeometric function can be obtained as a basis vector
transforming under the #ype A operators. Similarly, the most general
confluent hypergeometric (Laguerre) function will arise as a basis
vector transforming under #ype B operators. This connection between
type A and B operators and special functions will prove to be a powerful
tool for deriving identities involving hypergeometric and Laguerre
functions.

Up to isomorphism the complex Lie algebra s/(2) has two distinct real
forms: su(2) and L(G;). In Sections 5-16 to 5-18 all of the unitary
irreducible representations of the real Lie groups SU(2) and G, will be
obtained by restriction of corresponding local multiplier representations
of SL(2). The implications of unitarity for special function theory will be
briefly discussed.

Finally, in Section 5-19 the Lie algebraic fact that 75 is a contraction
of s/(2) will be used to derive a formula expressing Bessel functions as
limits of Jacobi polynomials.
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5-1 The Representation D+(u, m,)

According to Theorem 2.3 the irreducible representation D#(u, m,) of
%(1,0) is defined by complex constants u,u, m, such that neither
m, + u or m, — u 1s an integer, and 0 < Re m, << 1. The spectrum of
this representation is the set S = {m, - n: n an integer}. There is a basis
{fn : m€ S} for the representation space V' such that

]:ym — M m ]+fm = (?ﬂ [ H}fm-ﬂ ) ]_fm == _(m =+ u)fm—l:
Efm ol f“"‘fm; Cl.ﬂfm o (J+]_ + B3 — ]E)fm = u[u i I)fm

for all m € S. These operators satisfy the commutation relations
B ==%) [JHJ1=28.. [4LE=[]}E]=0. (51)

We will construct a realization of the algebraic representation
D(u, m,) such that J*, J, E take the form of the differential operators
(2.35) acting on a vector space of analytic functions of the complex
variable z. Let ¥, be the complex vector space of all finite linear

combinations of the functions %,(2) = 2%, n =0, 41, +2,.... In
Egs. (2.35) set A = m, , ¢; = —u — m,, to obtain
d
]azmﬂ—i—zﬁ, Bi=up
. u!' (5.2)
T = B = _ L + M,
oottty oo ta

The basis vectorsf,, , m € S, are defined by f,,(2) = &,(2)form = m, + n
and all integers n. Thus,

d
]Efm == (mﬂ T ‘EEE) 2= {mu - H}Hﬂ == mfm y

Fif = ((m0 — w3 + 28 2) 27 = (m — w1 = (m — ) fsn

5.3
u-t+m, d ©-3)

> -1 Eg_) ol — —(m - H]E’R_l — _{m + u}fm—-l 3

]_fm — _(

Efw = tfm-

Clearly, the operators (5.2) define a realization of D«(u, m,) on 77 .
We can now apply the procedure described in Section 2-2 to extend
this realization of D#(u, m,) on ¥] to a local multiplier representation of
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the local Lie group G(1, 0)=GL(2). However,since %(1, 0) == sl(2) @ (&)
and p(&) = E is a multiple of the identity operator for every irreducible
representation p of %(1, 0) listed in Theorem 2.3, the nontrivial part of
the representation theory of %(1, 0) 1s concerned solely with the action
of p on s/(2). We can set E = p = 0 without loss of generality for
special function theory. It is clear, moreover, that the representation
D%u, m,) of %(1,0) induces an irreducible representation D(u, m,) of
sl(2). The action of D(u,m,) is obtained from Egs. (5.1)-(5.3) by
suppressing the operator E. In the remainder of this section we will
study the representation D(u, m,) of sl(2) and extend it to a local multi-
plier representation of the local group SL(2). Similarly, rather than
study the representations 1%, |4, D(2u) of %(0, 1) given by Theorem
2.3, we will restrict ourselves to the representations 1, , |, , D(2u) of
5s/(2) obtained by setting E = u = 0.

[t was shown in Section 1-2 that s/(2) is the Lie algebra of the local Lie
group SL(2),

SL(2) = gg= (i 3):&,3},1*:,41?,5!2', detg = 1},

i.e., the group of all 2 X 2 complex matrices with determinant equal to
+1. Theorem 1.10 can be applied to extend the realization of D(u, m,)
defined on ¥ to a local multiplier representation of SL(2) defined on
0, , where 0/, 1s the complex vector space of all functions of 2 analytic
in some neighborhood of the point 2 = 1. Clearly, /; O ¥, and 0/, is
invariant under the differential operators (5.2). Thus, these operators
generate a Lie algebra of generalized Lie derivatives corresponding to a
local multiplier representation A of SL(2) acting on (%, .

The action of the l-parameter subgroup {exp ¢ £, c€ €} of SL(2)
on (7, is obtained by solving the equations

dz

et A Ty
E-——l, Ev(z,expﬂj)_——

=

Bo (2, exp ¢ # )

with 1nitial conditions z(0) = 2° £ 0, »(2°, e) = 1, where
! 0)

—e 1/

expic == (
The solution of these equations is
2(c) = 2° — ¢, v(2% exp ¢ #7) = (1 — ¢/z%)%+"™s,

If fe (Z; 1s analytic in a neighborhood of 2° we have

[Alexp ¢ £7)f1(2°) = (1 — ¢[z)**™af(5* — c)
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and A(exp ¢ #-) fe, if | ¢/z°| < 1 and 2° — ¢ is in the domain of f.
Similarly,

[Aexp bF D)%) = (1 — batpef (——)

where A(exp b #+) fed, if |bz?| <1 and 2°/(1 —b2°) is in the
domain of f; and

[A(exp 7 #%)f](2°) = e"of(e"z°)

where A(exp 7 #3) fe (I, if e'2° is in the domain of f. If g € SL(2) and
d # 0 it is a straightforward computation to show that

g = (exp &' F*)(exp ¢’ f)exp 7' F7)

where b = —bld, ¢’ = —cd, e”/* = d,0 <Im+" <<4n. Thus, for
b |, | ¢ |, |+" | sufficiently small, the operator A(g) is given by

[A(9)f1(z) = [A(exp b’ F*) Alexp ¢’ #7) Alexp 7' F7) f1(2)

e §EE) o

for fell, and z # 0 in the domain of f. We have used the fact
ad — bc = 1. The multiplier v takes the form

v(2, g) = (d + b2)“™e(a + c¢/z)*+™.

As it stands, the final expression in (5.4) is not well defined; it 1s not
even a single-valued function of the group parameters. However, it is
obvious that for g in a sufficiently small neighborhood of the identity
element, »(z, g) has a unique Laurent series expansion in z. To give a
precise definition of the operators A(g) we restrict ¢ to the open set

N C SL(2),
N ={geSLQ2):|cJa| <1< |dlb|, —m < arga, argd < m}.
As a local Lie group, N is isomorphic to SL(2). Given f € (7, let D, be

the domain of f, i.e., the open set in ¢, containing 1, on which f1s
defined and analytic. For every ge N, z € ' let zg be the complex number

azx + ¢

Eg:b:&:—kd

and define Z,(g), the domain of g, by
D(g) = {fell: 1ge D;}, l1e .
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Then, if g € N, and f e 2,(g) we have A(g) f € Z; where A(g)f is defined

by the Laurent series expansion of v in (5.4). In particular,
Darr = {lela| <|z| <|dfb|}n{z:3ge D}

To give a precise statement of the representation property of
the operators A(g) we define the set N(g,), for every g, e N, by
N(g,) = {g£ € N: gg, € N} and let N'(g,) be the connected component of
N(g,) containing theidentity element e € SL(2). Then, ifg, € N, g, € N (gs)
we have g,g,€ N; and, for every fe(Z;, such that fe Z,(g,) and
A(g,)f € Z,(g:1), we can conclude that fe Z,(g,g,) and

[A(£:£2)71(2) = [A(g1)(A(g2)1)](2) (3.5)

for all 2 in some nonzero neighborhood of # = 1. (The restriction of
g1 to N'(g,) i1s needed to make the representation single-valued.)

Following the procedure of Section 2-2 we can restrict the multiplier
representation A from (7, to ¥, . (¥] is the space of all finite linear
combinations of functions of the form A(g)f where ge N, fe¥;.)
Clearly 7 is invariant under 4. Furthermore, every % € ¥, has a unique
Laurent expansion

= 5 e, aged

H=—00

which converges absolutely in an open annulus D, about z = 0,
including the point # = | in its interior. Thus the basis functions
Jn(2) = hy(2) = 2", m =m, + n, n an integer, form an analytic basis
for 7] (see Section 2-2).

The matrix elements A(g) of the operators A(g) on 7 are defined by

[A(9)h](2) = i Ap(g)hi(=), gEN, k=10,41, 42.., (5.6)

[om—a

or

w+m ok u—m —k 0
ok (1 _}_é) R (1 3 %ﬁ) Ut matkJu—m—k _ 2 Au(2)2t, (5.7)
l=—n0

where | cla | < |z | < |d/b|, —m < arga,argd < =,and ad — bec = 1.
From (5.5),

A(g12)h = A(g1)[A(g2)hy],
which leads to the addition theorem

Ay g18:) = Z A(8:1)A;51(22), l, k integers, (5.8)

j=—m
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valid for all g,, g, € N such that g, € N'(g,). Expanding the left-hand
side of (5.7) by means of the binomial theorem and computing the
coeflicient of ! we obtain an explicit expression for the matrix elements:

_attidtkek-iD(s k4 1)
i e e e ]!

F(—s—1l, —t+kjk— 1+ 1; bc/ad)

if E>1

(5.9)
Aplg) = T —1 0T — ) F(—s—hk, —t+ 51—k + 1; belad)

it [ =k

Here g e N, I' is the gamma function, F is the hypergeometric function
defined by its power series expansion, (A.4), and s = u + m,,
t = u — m, . Note that neither s nor # is an integer. The two expressions
(3.9) can be combined into one by noting that

F(—s —1l, —t+4 ki k— 1+ 1; bc/ad)
'k —1+41)

is defined even when & — [ + [ is a negative integer. In fact, using (A.5)
we obtain -

F(5—|—k—|—f}F(—s—3,—t—|—k;k—f—|—1;bﬂf’ad}

— a8l Jt=k 1
Aulg) = a* = mr T Tk —1+ 1)

(5.10)

for all integers /, k. The matrix elements can be written in other equiva-
lent forms by making use of the transformation formulas (A.8), but this
will be left to the reader.

It will sometimes be convenient to adopt a different coordinate system
for N. Namely, we write

a b ez () cosh % sinh Eﬂz— LI
g — _—
o d 0 e«2]\sinh % cosh % 0 e-B/2

= (exp o #?) (E}Ep — ("ﬁ+ ;; "f—)) (exp B_#3).

A simple computation shows that the coordinates a, b, ¢, d — (1 + bc)/a
are related to the coordinates «, 8, w by

w LW
a = e'*+8)/2 cosh 5 b = ¢'P/2ginh — |
- » (5.11)
¢ = el tB)/2ginh 5 d = e\—=P)/2 cosh 5 cosh w = 2b¢ + 1.
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To make this change of variable one-to-one on N we would have to put
some restrictions on the range of the complex variables «, B, w. Thus,
(o, B, w) and (« +- iw, B — tm, —w) correspond to the same coordinates
a, b, c. Further the coordinate transformation 1s not defined for bc = 0, so
the coordinates (a, B, @) cannot be extended over all of N. For our pur-
poses,however, it is enough to note that if we can assign to g€ N coordi-
nates («, B, w) satisfying (5.11), then for suitably restricted values
of the parameters the matrix elements A4;(g) are given by

Tw+m,+k+1)
T ~m, -1+ 1)

Ap(g) = eiPTHeietH) B ma— etk (cosh w) (5.12)

where cosh w = 2bc + 1 and 8B™(2) 1s defined by (A.9), (11). (Indeed
(5.12) is obviously true for «, B real and w > 0. Its domain of validity
can then be extended by analytic continuation.) Clearly, the branch
points of B['™(z) are located at ¥ = —1, +1, co. Thus, if the z-plane
is cut along the real axis from — co to -1 this function can be analytically
continued to the whole z-plane outside the cut. Furthermore, we have the

relations
i’i;;*”*(z) = B™T(z), Brm(z) = BI™ (2). (5.13)

An important special case is
By ~#(z) = BY(=)

where the generalized spherical harmonics 8% are defined by (A.9), (11).
The functions B]"(z) will be encountered frequently in the remainder
of this chapter.

If the expression (5.10) for the matrix elements is inserted into (5.7)
one obtains the generating function

5 1 w© I's+1) F(—s—1IL, —t;—1+1;b)
(1 4+ 271%1 + bz)* = z zEF(S—I—.-!—|—1) o ,

{=—cn0

1 <|z|<|b]. (5.14)

We can derive addition theorems for the hypergeometric functions by
substituting (5.10) into (5.8). The result is (after some manipulation)

Fank+rw+ﬁmm+”)

"(1 +bla)(1 + ac
(1 + bfa)y—=(1 + ac)~*(a + 1) ( la)(1 + ac)

I'k +1)
o5t F(s,t +j—kj+ 1;b)F(s—j,t; —j+k+15¢)
— J . ; 5.15
Q;H I'G+1) U= jt+k=t1) G124
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where s, ¢ are arbitrary complex numbers, not integers, and & is an
integer. When k& is a negative integer, the function [I'(R)] F(s, ¢; k; 2)
is defined by (A.5).

As a power series in z, F(s, t; k; 2) converges absolutely for | 2| << 1.
However, if a cut is made in the complex plane from -1 to 4 oo along
the real axis, this function can be analytically continued to a function
analytic and single-valued in z throughout the cut plane. Thus, Eq.
(5.15) can be analytically continued in the variables a, b, ¢ to a larger
domain of validity than that originallyimplied by the addition theorem(5.8).
In fact, the left-hand side of (5.15) is defined and analytic for all q, b, c € €
suchthat|b| < |a| < | l/e|and(c + b/a)(a + 1)(1 + b/a)~(1 4+ ac)™
does not cross the cut. Hence, the right-hand side of (5.15) must also be
defined and analytic for these values of the variables, where in addition
we must require that 4 and ¢ do not cross the cut.

Two special cases of this formula are of interest. For b = 0,

1)

F (s, t; k 1;5_(_‘ﬂ’___ W | |

(1 + ac)~*(a + 1)* (S‘ + IJ”“’): @Fs—jt—j+k+1i¢)
Ik +1) =0 J"! LE—{~-R4"L) !

lac | < 1,
while if ¢ = 0,
F(s, t; k4 1; L 1){'”&})

1 +b
(1 + bla)=*(1 + 1/a)* T +{1) - bla)
- : a—*% F(s,t +73—Fky7+1;b)
- s;_m{k —J)! TG+ 1) ,  |bla] <1.

5-2 The Representation 1,

The irreducible representation 15 of #(1, 0) is defined for all p, u €

such that 2u is not a nonnegative integer. The spectrum of this represen-
tation 1s

S = {— u - n : n a nonnegative integer},
and the representation space V has a basis {f,, , m € S} such that

Jafm = mfm ) Efm == F"’fm ’ ]_‘fm = {m = u}fm+‘1 »
Jin=—m+t)fni, Cofa=U"+PP—P)fa=ut+1)fn.

(Here £, 4 = 0,80 J-f, =0.)
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As in the last section we can construct a realization of 1% on a space of
analytic functions of one complex variable = such that J*, J3, E are the
differential operators (2.35). Let ¥, be the complex vector space of all
finite linear combinations of the functions 4,(2) = 2%, n =0, 1, 2,...,
and define the basis functions f,,meS, by f,(2) = h,(2) where
m = —u + n. In Egs. (2.35) set A = —u, ¢; = —2u to obtain the
differential operators

d d d
P=—u+2z—, E =y, J+:~—2uz-{--32£, ]—:—AE.

These operators and basis functions satisfy the relations

d
W = (—u +25) 2" = (—u+ )" = mf,,

JAfes— (——21;3 + 2% i) 2 = (—2u 4 n)2™ = (m — ¥) fns1»

dz
. (5.16)
Jon = — 8" = —ns" = —(u+m)fpny,
Efm = bfum

for all m € S and, thus, determine a realization of 1.

In the usual manner this realization can be extended to a multiplier
representation of G(1, 0) defined on 7, 2 ¥, . Here 0/, is the complex
vector space of all functions f analytic in some neighborhood of z = 0,
1.€., the space of all functions f of the form

f(2) = i a,2", a,el, (5.17)

Fro()

where the power series converges in a nonzero neighborhood of 2 = 0.
However, as was shown in Section 5-1, without loss of generality we can
set E = pu = 0 in (5.16) and consider the representation {, of si(2)
induced by the representation 1) of %(1, 0). Hence, we shall suppress
the operator E in the following paragraphs and extend the realization
of T, given by (5.16) to a local multiplier representation B of SL(2) on
a, .

The multiplier representation B was computed in Section [-4.
Indeed, from Eq. (1.69)" we have

[B(e)f1(=x) = Gz + df (), fe g, (5.18)
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where g € SL(2) is given by (1.15). However, to define this multiplier
representation precisely we restrict g to the open set P C SL(2) where

P={geSL(2):d #0, |argd | < m}.

P 1s a local Lie group isomorphic to SL(2), i.e., P and SL(2) have the
same Lie algebra. For every fe @, let D;C ¢ be the domain of f.

Furthermore, if 2¢ = (azx + ¢)/(bz + d) for every ge P, z € (, define
Z,(g), the domain of g, by

Dyg) ={fel,:0geD,}, Oel. (5.19)

Then if ge P and fe 9,(g) we have B(g) f € &, where B(g) f is given
by the power series (5.18). In fact,

Dyiyy = {l 2| < |dfb|} N {z:2g€D;}.

Given g, € P define the set P(g,) C P by

P(ga):{gEP:gguEP}

and let P’(g,) be the connected component of P(g,) containing e (the
identity element of SL(2). The fact that B is a local representation of P
1s expressed as follows: (1) If g,e P, g, € P'(g,), then g,g, € P; and
(2) for every fe, such that fe P,(g,) and B(g,) f€ Z,(g,), we can
conclude that fe 2,(g,g,) and

[B(£1£:)/1(z) = [B(£:)(B(g2) /)(2)

for all # in a nonzero neighborhood of z = 0. The restriction of g, to
P’(g,) 1s required to make the representation single-valued (2z may not
be an integer). However, if 2u happens to be a negative integer this
restriction Is not necessary.

According to our usual procedure we define the matrix elements
B(g) of the operators B(g) by

(Behd(z) = Y Bulgh(s), ge€P, k=0,1,2.,  (520)

=0

or

b 2u—k e
d2u— (1 4 E) (az +c)k = ¥ Bu(g)s', |bz/d| <1, (5.21)

L=l
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where | arg d | << w and ad — bc = 1. From the representation property
of the operators B(g) we obtain the addition theorem

W

Bii(g18:) = E B ;(£1)Bji(&z), I,k =0,

P
which holds for all g, , g, € P such that g, € P'(g,). The matrix elements
were computed explicitly in Section 1-4:

atd®-kc* -k + 1)

B,.(g) = S A I)F{—I, — 2u + Ry k — 1 4 1; befad)

if E>1>0, G
" aﬁ:dﬂu—ﬁbi—~kr(2u — k -+ 1} i o .
if 1=k=0, (5.23)

However, from (A.5) it follows that both (5.22) and (5.23) retain their
validity for all k, [ = 0 without restriction. The hypergeometric series
in these expressions break off after a finite number of terms. Hence they
are hypergeometric polynomials in bc/ad (the Jacobi polynomials).

In terms of the variables (o, 8, w), Eq. (5.11), the matrix elements are

|
sz{g) — Ea'[—uﬂ}ﬁﬁi —t4k) ( f;

I'Qu —k + 1)
T(u — I+ 1)

) By-ti—etk(cosh w)

— gl =tk 1) Bl

B-utbu—k(cosh w) (5.24)

where the functions 8B;™(z) are defined by (A.9). (See the remarks
immediately following Eq. (5.12).)
From (5.21) and (5.23) there follows the generating function

u— _m PQu—k+1)F(—k, —2u+ 51—k +15b)
(1 + 2)2ek(b - 2)* ZEL T e

valid for | 2| < 1. The addition theorem for the matrix elements By,
takes the form

(a + b (1 + ac)y**(a + 1)+
F(—b—2u; k— 1+ 1; (ac + )@ + 1)(a + 5} + ae)?)

Tk —1+1)
__Zaﬂ—irh—&+qj—i+lﬂ
= I'(j —1+1)

F(—), —2u,k—j + 1;¢)

W —i+ D) ; lac| < 1, (5.25)
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valid for all nonnegative integers &, /, and all complex numbers u such
that 2u is not a nonnegative integer. The function [I'(n)]~! F(s, t; n; 2)
is defined by (A.5) when 7 i1s a negative integer. If 5 = 0, Eq. (5.25)
simplifies to

F(_E: '_Z’H; kR —1 + 1; g(a - ]}(1 o .ﬂ.‘_‘.‘}_l}

(1 + acy?®(a + 1)+

Tk —1 1 1)
s ad F(—j— 1, —2u;k—j—1+1;¢)

= + : , 1,
57 PE—j—1+1) b

while if ¢ = 0, it becomes

(@ 4 1)+ Ba + 1)
- At e Ml 1 - ! -
(a + b) P(k_H])F( L-—2uk—1+ ==
:i a F(—Il,—2u—k-+j;j—1-+1;b)
=0 (R =) rGj—10+1)

5-3 The Representation |,

According to Theorem 2.3 the irreducible representation |4 of
%(1, 0) 1s defined for each p, u € ¢ such that 2u is not a nonnegative
integer. The spectrum of this representation is the set S = {# — n: n a

nonnegative integer}. The representation space I has a basis {f,, , m € S}
such that

]%fm — mfm » Efm = P"fm.'- ]+fm 7= (??I 2 LE)f1r;rt+1 ,
Jhw=—m + W) fua, Ciofu=U0T"+ PP — P)fo =uu+ 1) fn.

(Here f,.; = 0.) As in the first two sections of this chapter we could
find a realization of |4 in terms of the differential operators (2.35).
However, it is more convenient to use the operators

]3:u—zi, E =, }+:—£, ]—=—2uz—|—32§-

&
(5.26)

which are a modification of (2.35). These operators satisfy the commuta-
tion relations (5.1), hence, they generate a Lie algebra isomorphic to
4(1, 0).

We will realize | on the space ¥, of all finite linear combinations of
the functions 4,(2) = 2™ n = 0, where J* ]3 E are given by (5.26).
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Thus, if the basis functions f,, , m € S, for ¥ are defined by f,, () = 2*
where m = u — n, n = 0, we have

+ :_i n— gzl — (m—u 41 »
| i 7 ( dz) 5 ; il ( )/ (5.27)
Ef— (—Zuz o8 __) 3" = (—2u+n)s" = —(m + u) fruy

dz
Efm = Wfm s

which yields a realization of |%.

As usual we set E = p = 0 in (5.26), (5.27), and restrict ourselves
to consideration of the representation |, of s/(2) induced by |%. The
realization of |, given by (5.27) can be extended to a local multiplier
representation of SL(2) on the space (%, of all functions of the complex
variable 2, analytic in some neighborhood of 2 = 0. Since the procedures
involved in deriving this multiplier representation and computing its
matrix elements are so similar to the work of Section 5-2, only the results

will be presented. Consider the neighborhood of U of the identity
element of SL(2) defined by

U={geSL(2):a+#0, |arga| < 7}
and the set Z4(g),
Zy(8) ={fe @, : blae Dy},

where D, C ¢ is the domain of f. The action of the local Lie group U on
(I, 1s determined by the operators C(g) where

[Ce)f1(=) = (ex + ayef (2, (5.28)

2 + a
defined for all fe (7, , g € U, and z € € such that
dz + b

cz + a

2| = and e D,

C

Given g, € U, define the set U(g,) by U(g,) = {ge U: gg,€ U} and let
U'(g,) be the connected component of U(g,) containing e. The fact that
the operators C(g) form a local representation of U is expressed by the
relation

[C(£1£2)f1(2) = [C(&1)(C(g2)/)](2),
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valid for g, e U, g€ U'(g,), feDs(gs), Clgo)f € Zy(g,) and z in a
suitable nonzero neighborhood of 2 = 0. The matrix elements for this
multiplier representation are defined by

[C@hlE) = ¥ Cal@hl@), 2>0, gel, (529

which leads to

(ez + a)*** (dz 4 b)F = i Culg)2, | ezfa| < 1. (5.30)

=0

A comparison of (5.21) and (5.30) shows that the matrix elements can be
obtained from those of the preceding section by making the interchanges
a <> d, b ¢c. Thus,

d'a b0k + 1) F(—1, — 2u + k; k — 1 + 1; bc/ad)

Cwl®) =771 T(k—1+1)
 d¥e® T 2u — kR + 1) F(—k, — 2u + ;1 — kR + 1; befad) 531
ST T(Q—k T 1) i)
Finally, we have the addition theorem
Cul£182) = Z Cri(£1)Cinlg2), Lk =0, (5.32)

=0

valid for g, € U, g, € U’(g,). The identities for special functions obtained
from (5.32) do not differ from (5.25).

5-4 The Representation D(2u)

The finite-dimensional representation D#(2u) of %(1, 0) is defined for
all pe and all nonnegative integers 2u. The spectrum S of this
representation 1s given by S = {u,u — 1,..., —u+ 1, —u} and the
vectors f,, , m € S, form a basis for the (2u -+ 1)-dimensional represen-
tation space V, where

.I&:fm = mfm 3 Efm = Ffm » ]+fm = [m — H)fm+1 )
J_fm = _(m . u)fm—l 1 Cl.ﬂfm = {I+]_ + PP — JE]fm = H(H T l)fm '
(Here, f_ 3 = fuys =0.)
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A realization of this representation can be constructed on the space
¥~ of alllinear combinations of the functions 4,(2) = 2*, n = 0, 1,..., 2u,
such that the operators ], ] E take the form (2.35). Indeed, for
A= —u, ¢c; = —2u in Eqgs. (2.35) we have

d d d
- i, e e T o " R g
- U I'-‘?"dgi E My j 2M+Edgj I dg*
(5.33)
Define the basis functions f,,meS by f,.(g) = &,(z) where
m= —u-+mn 0<mn<2u. These operators and basis functions

satisfy the relations
d
3 — | — — 2 — — | —U —+— —
jfm_( u,zdz)z” (—u + n)2" = mf,,,

T = (208 + 2 2) 4% = (=20 + maHt = (1 — ) fs

d

= — a8 = = = —(u+m) fy,

Efm = P‘ﬁn )

and define a realization of D#(2u).

As remarked earlier, without loss of generality for special function
theory we can set E = p = 0 1n (5.33) and restrict ourselves to consider-
ation of the representation D(2u) of si(2) induced by the representation
D% 2u) of %(1, 0). Thus we suppress the operator E.

The representation D(2u) of sl(2) on 7™ can be extended to a
multiplier representation of SL(2) on ¥ ), In fact, the relevant compu-
tations were carried out in Section 1-4. It was shown there that the action
of SL(2) is determined by operators D(g), such that

[D(e)f1(2) = (b5 + d)eef (5 —) (5.34)
for all ze &, fe ¥, and g € SL(2). Furthermore,

D(g,£) f = D(£)[D(g.)f] for all g, , g, € SL(2).

In this case the operators D(g) are defined for all g € SL(2), not just in a
neighborhood of the identity element.

The matrix elements D,(g) of D(2u) with respect to the basis 4,(2) = 2%,
k=0,1,..., 2u, are defined by

[D(e)h(z) = ¥ Du(glha), 0 <k <2, (5.35)

=0
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or

2u
(bz + d)?*(az + ¢ = Y Dy(g). (5.36)

L=0)

A simple computation yields

ald®—Fe* 0k + 1)F(—I, —2u + k; k — [ + 1; be/ad)

Dil(8) = T(+ 1) Tk —1-+1)
bW (2u — k + 1) F(—k, —2u + I, 1 — k + 1; befad)
T2k —1+ 1) Il—k+1) :
0 <k I<2u, (5.37)

where the hypergeometric polynomials are defined by (A.5) when
k — I (or I — k) is a negative integer. From (5.36) and (5.37) follows the
generating function

_ o TQu—k +1)F(—k, —2u+51—k+15b)
(L +a) Ko +8f= X po— T 1) Ti—k+1) ‘

=0

0 <k < 2u

In terms of the variables («, 8, w), Eq. (5.11), the matrix elements
become

|
Du.:(g} — pal—utl)ghl—utk) (%_.) 553’3'_“*'"‘"([:0511 w)’ {533)

where B'™ 1s defined by (A.9). (See the remarks following (5.12).) The
addition theorem for the matrix elements is

2
Dy(g18:) = Y. Di(g)Di(g2)y 0 <1k <2u, g, g,€SL2).
=0

Substituting (5.37) into this expression we obtain, after some simplification,

(a + b1 + ac)**a 4 1)*
F(—f, —dutkk—1+1

(ac +b) (a + l})
" (@ +b) (1 4 ac)

Tk —1+1)
o ffﬂ F(—l, —2u +jij—1+1;8) F(—j, —2u+kk—j+ 150
= IG—1+1) Ik —j + 1) ,

(5.39)
valid for all integers [, k, 2u such that 2u = [, k > 0, and all g, b, c € €.
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5-5 The Tensor Product D(2u) ® D(2v)

We now turn to the problem of decomposing the tensor product of
two finite-dimensional irreducible representations D(2u) and D(2v) of
s/(2) into a direct sum of such representations. Although the solution to
this problem is well known, it will be treated again here because of the
simplicity of the method and because the treatment generalizes to tensor
products of infinite-dimensional representations of s/(2).

Let D(2u), 2u a nonnegative integer, be a finite-dimensional representa-
tion of s/(2) defined in Section 5-4. Recall that this representation was
realized on the space ¥" generated by the functions A, (3) = 2%,
k =0, 1,..., 2u. However, we will find it more convenient to use instead
of the vectors %,(2), the renormalized basis vectors

(___H}H+ﬂ

P®) = [(# + n)l (u — )2

n=—u,—u—+l,.,u (540)

In terms of this new basis for "™ the action of the differential operators
(5.33) becomes
Vou=npn,  Tpo = [0 —n)u+n+ D1 py,

5.41
Jp. =[(u —n+ D+ n)2p,_, . (5.41)

If we define the matrix elements Q!%)(g), g € SL(2), by

ol

[D(E)P;;_ﬁ](ﬂ'} = Z El(gjp;_“(z:], R = 01 15"*1 2”: {542)

Le=0)

we obtain

05 (g) = (—1)4H* [;: gi : 2}!!]132 Dy(g), 0 < LEk<<2u, (543)

where D,(g) 1s given by (5.37). Moreover, it is easy to derive the gener-
ating function

1 2u
i [(bx +d) +wlaz + O] = Y p(@)QW(e)prulz).  (544)
(2u)! k=0
The representation D(2u) (x) D(2v) can be defined on the vector
space ¥ ™ (¥) ¥" consisting of all polynomials f in the variables 2, w

such that
Dy 2

flw)= Y Y auzbat, a,, €.

k=0 =0
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The vectors p;, ;,

! {_z}ﬂ+k{ w)t-]-l
Pedl® @) =t BT - D) (e — B (0 — DI

—u<k<n, —v<I<y, (5.45)

form a basis for "™ & ¥"®, In particular, the dimension of this space
s (2u 4 1)(20 + 1). The action of SL(2) is given by the operators
T(g), g € SL(2), where

(T(e)/1(2, ) = (b2 -+ d)Pe(bw + dyof (75, 22 ) (5.46)

for all fe ¥y ™ @ 7 ®. Clearly, the operators T(g) define a multiplier
representation of SL(2). Furthermore, computing the generalized Lie
derivatives of this representation we have

]3=—u—ﬂ+za+w% ]+=—2uz—2ww—1—32£:+w2£?,
(5.47)

N

V=% "

D(2u) & D(2v) 1s reducible. To decompose ¥ &) ¥ into subspaces
irreducible under the action of s/(2) we procede by computing the eigen-
vectors of J® which are of lowest weight, i.e., eigenvectors f of J3 such

that J-f = 0 where J® and ]~ are given by (5.47). The solutions are
easily seen to be the functions

s o(2, w) = Ny(z — w)?, s =0, 1,54, 2g,
where the N, are arbitrary constants and ¢ = min(u, ). Indeed,
Phso= (s —u —0)hy,, J-he o =0.

In analogy with Section 4-5, we introduce on Y™ (X) ¥"® a complex
symmetric bilinear form B determined by the relations

B(pr,1» Pr.v) = O 011 0 < kR <
0 <Ll <2 (5.48)
where 8,, =0 if k2 £/, §;, = 1. Thus, B(f, &) = B(h, f) € € and
B(af + a'f',h) = aB(f, k) + a’'B(f', k) for all f, f,he ¥ ™ & ¥,

a, a' € €. The following lemma relating this bilinear form to the operators
(5.47) 1s easily proved:
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Lemma 5.1 Forall f,he¥y ™ ® v O,
() B(J%, k) = B(f, J*h),
(1) B(I*f, k) = B(f, Ih).

This bilinear form can be used to normalize the functions &, , i.e.,
the constants /V; can be chosen so that B(A, 4, &, ) = 1. Thus,

= sl 2 —w)sd & sIzE(—w)S—E)

Bks rhs :NEB . : ’
(aar o) = N, (En = & A=

- Bt EE{ZH—j}!(Zw—s—I—j)!_
RO (= e

Making use of the identity

L (m L+ k— ! (n+))! ~ mlnl(m +n+ k4 1)!

Eﬂ Tk —)) IR )] 2:4)

(Gelfand et al. [1], p. 149), we obtain

Voo . (2u + 2v — 25 1+ 1)! 1/2
N, =(-1) L! (2u — ) (20 — s)! (2u + 2v — 5 + [}] )

§=0,1,.,29, (5.50)

where the phase factor (— 1)® has been chosen for convenience.
Now that the functions 4, , have been determined, we define additional

vectors /A, ; by

e+ 20— 25 — R) A2 it
o = [ k! 2u + 2v — 2s)! ] ()0
s =0, 1,20, k=10; 1, 2w 20— (5.51)

where the operator J* 1s given by (5.47). Each £, ;. is a polynomial of order
s + k in 7 and w, and there are a total of Y24, (2u - 2v — 25 + 1) =
(2u + 1)(2v + 1) such polynomials. Furthermore, it follows exactly as in
the proof of Theorem 2.3, part (iii) that Jth, 5,0, ». = 0. We will show
that the £, , form a basis for ¥ ) ¥ ),

Lemma 5.2
(1) Jthee=[(R+ 1)2u+ 20 — 2s — B)]'2 By v s
(1) J A, =[R2u+2v — 25 — k4 1)]'2 by,
(1) Joh, . = (B — (u+ v — ) Ay,
s=20,1,...,2q, ¢g=min(u,v), k=0,1,...,20+ 29 — 2s,
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PROOF

; 220 =25 — R s
@ Fhos = [T (2u + 20 — 29)! | 9
— [k + 1)Qu + 20 — 25 — B2 g s -

(111) From the identity [J3, (J*)¥] = k(J*)* there follows

. [{2u 20 — 25 — k)L
s = |21 (2u + 20 — 25)! |

[(Zu 4= 20— 25— R
Rl 2u + 20 — 2s)! |

PB(I*)h

|2
C(J)IPRs

(Qu 420 — 25 — A)!
+ [ @u + 20 — 291

=k —(u+v—8)h ;.

1/2
| kyh g

(i) We use induction on k. Since J=A, , = 0 the equation holds for
k = 0. Assume (ii) is valid for £ < k, where 0 << &, < 2u + 2v — 2s.
Then

]_ks.kﬂ-i—l = [(kﬂ T l}{Zﬂ -2 —&5 — krsu)]_l’ll2 ]_J+‘hs.kn

from (1). The relation J=J* = J*]J— — 2]J3 and the induction hypothesis
imply

Tl = Yt ey, — 2P0 — (ks 1)2u 420 — 25— k)b, 5. -

Therefore, J=h, ;. 1 = [(ky + 1)(20 4+ 20 — 25 — &)} Ay . Q.E.D.

Comparing Eq. (5.41) with Lemma 5.2 we see that for a fixed value
of s the vectors h ;. , R =0, 1,..., 2u 4 2v — 2s, form a basis for the
representation D(2u + 2v — 2s) of s/(2). Thus, the action of the operators
T(g), g € SL(2), on the vectors k, ; is

Bu+42v-—23s

[T(&)hsil(z, w) = ), QLH=(g)hs(2, w), (3:32)

=0

s=20,1,..,2¢, k=0, 1,..., 2(u + v — s), where the operators T(g) and
the matrix elements O are defined by (5.46) and (5.43).
A simple induction argument utilizing Lemmas 5.1 and 5.2 yields:

Lemma 5.3 B{ks,.lr 3 ks",."c’) = 53,5" Sk,k’ 3
siars =0 s e k=0, L uto-—35) & =0,1i:;20 v —is)
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According to this result, the set of (2u + 1)(22 + 1) vectors {&, ,;} is
linearly independent; hence, it forms a basis for ¥ @ &) ¥ ),

2minfu,v)

Theorem 51 D(2u) @ D2v)~ 5 @ DQu + 2v — 2k).

=
The Clebsch-Gordan coefficients for this decomposition,

Clu, l;v,7 | 7, B)
nonzero only if / 4 j = &, are defined by
B =D Clulo,jlu+v—s,k+s5s—u—ao)p,,,
L
s =0,1,...,2min(x,v), k=0,1,..,2(u+2—ys). (3.53)
Thus,
Bhsr 1) =Clu, Lojlut+o—s,kh+5 —u—9)8,; 1isun- (5.54)

From (5.54) it is easy to invert (5.53):

amin(u,v)
Pri = z Ciu,Lvjlu+o—s5, 0+ iiuivss
g=I
—u<I<uy —wv<<j<o. (3.55)

To derive a generating function for the Clebsch-Gordan coefficients,
set g = exp(—b_77), k = 0, in (5.52) and obtain

alu+v—sz)

Ny (bz + 1)*%(bw + 1%z —w)* = ) (—b)
L= '
_ [ (2u + 20 — 2s)!
N (2u 420 — 25 — I)!

]”E ks (3, w).

or

Ns(bg —_— 1}23—3(.{?3{? e 1)2:}—3{3 L w)s ) 2(114§_3] Hf
[(2u + 20 — 25)!]1/2 - & Z

CB(—1)Cu,j — w08+l —f—ov|u+v—s5+ 1 —u — v)giw+-
(A (20 +2v —2s — D j1 Qu — ) (s +1 —j) (20 — s — I +j)IJ/2

(5.56)

At this point it 1s useful to note that the Clebsch—Gordan coefficients
for which we have just established a generating function are exactly the
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coefficients computed by Wigner for the tensor products of irreducible
representations of SU(2) (the group of 2 X 2 unitary matrices with
determinant 1) (Wigner [3], Hamermesh [1]). This 1s due to the fact
that the unitary irreducible representations of SU(2) are obtained by
restricting the representations D(2u) of SL(2) to the subgroup SU(2).
We will examine this relationship in more detail in Section 5-16.

To show the connection between (5.56) and the theory of angular
momentum in quantum mechanics we cast our results into a more
conventional notation. Namely, weset , = u, [, = v, [ = u + v — 5,
m=j—u my=s8s+1l—j—ov,m=101—u—v-+s where 2/; 1s a
nonnegative integer and m; takes the values m, = [, , [, — 1,..., —[; 4+ 1,

T

—1, for i = 1, 2, 3. Further, we introduce the 3-7 coefhcients defined
by

— 1la—mg
(31 A 33):{ 1) Gl il sons | hg—amd) (557

my My My 21, + 1

(Hamermesh [1]). Then, for 6~ = x, (5.56) can be written in the
symmetrical form

(x — z)htls—t(x — w}fﬂﬂs"il{z — g)atlals

[+ L — Il b — IV 1, — (G + L+ L+ DI

zklwkﬂxka( L Ly Ly )

y ky — b Ry — 1y Ry — 1
- (B! (2L, — k)L Ryl (20, — ko)l kgl (21, — Ry)1]H2°

0<k, <2,

(5.58)

This is a well-known generating function for the 3-j coefficients
(Schwinger [1]). The obvious symmetry of this expression implies the
existence of corresponding symmetries among the 3-j coeflicients.
The reader can derive these symmetries for himself or refer to standard
references on the subject (Hamermesh [1], Wigner [3], Bargmann [4]).

Equations (5.54) allow us to express the matrix elements of the
representation D(2u) & D(2v) with respect to the p, ; basis in terms of
the matrix elements with respect to the 4, ; basis. A standard argument

(Lyubarskii [1], p. 234) yields
Q7 (8)2;1(8)

ominfu,v)

= Y Cwl—wv,j—v|lut+v—sl4+j—u—0ov)

Fe)

-Clu,l! —wu;0,)' —v|lut+o—s+j —u—o0)O0%* 3 (g),

I4+j—a ' +j"—a

(5.59)
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where LI’ = 0, 1,..., 2u; j,j' =0, 1,..., 29, and g € SL(2). In terms of
the B functions (5.38) this relation reads

omin(u,v)

RV (2) R (2) = Y Culivgluto—s [ 4 71)
g=0

cCl, U v, j | u4v — s, U 4+ j)RIEH(2),

U+ v—5
—’Hi:__g,réﬂ, —f}%:jjjj,__{Hﬂ,
where
oy (u -+ ') (u—1)!
1Y e AT
) = [ e =)
(see Section 5-14).

1/2
] B-1¥(2)

5.6 The Tensor Product 1, @1,

The local multiplier representation T, , 2u not a nonnegative integer,
can be realized on the space ¥, with basis (z) = 2%, k=0, 1, 2,... :

Bh, = (k — wh;, J*h, = (B — 20)hpss -k, = —kh_,, (5.60)

where J%, J® are the differential operators (5.16). In terms of this basis
the matrix elements B{(g), g € P, are defined by (5.22), (5.23) where the
superscript u denotes the representation T, .

The multiplier representation 1, @ 1, of PC SL(2) (2u and 29 not
nonnegative integers) can be defined on the vector space My R Oy,
consisting of all functions f(z, w), analytic in a neighborhood of the point
(0,0) e € x €. The functions p; (2, w) = skt k, I = 0, 1, 2,..., form
an analytic basis for (73 ® (75 . The action of P on this space is given by
the operators T(g),

(5.61)

az + ¢ aw + c)
1

[T(g)f)(=, w) = (bz + d)*(bw + d)*’f (bz Td'bwrd

where fe 3 ® (I and g € P is in a suitably small neighborhood of the
identity element. It is easy to check that the operators T(g) define a local
multiplier representation of P. This action of P on Xy R (L, induces a
representation of s/(2) in terms of the generalized Lie derivatives

d ¢
P=—u—7v 1—35 i_w_.fi;ﬂ_’
J* = —2uz — 2vw TEEE —|—ﬂ.r2i (5.62)
Oz dw
o ¢
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operating on the space ¥, @ 7 of all polynomials in 2 and w. The Lie
derivatives (5.62) are formally identical with (5.47), but they operate on
different spaces and are defined for different values of # and 2.

As in Section 5-5 we try to decompose ¥, X ¥, into subspaces
irreducible under the action of s/(2). Again we compute the eigenvectors
fof J? such that J-f = 0, where ]J3, |~ are given by (5.62). The solutions
are, to within a multiplicative constant, the functions

fsolz w) = (3 — w)?, s =01 250, (3.63)

Thus, P f,o =6 —u—9) f0, ] fs0 =0, for s = 0. Let Q be the
symmetric bilinear form on ¥, () ¥, with the property

Q(Pr.1» Prr.vr) = Oiw Oy (R, 1); Rkl = 000520 (564)

where
(=1 I T(—2u)(—2v)
Stkl) = I'k — 2u)I'(l — 2v) :

(5.65)

(The vectors p,. ;, &k, [ = 0,1, 2,..., form a basis for ¥, ® ¥, .) If the
operators J#, J? are defined by (5.62) it 1s easy to prove:

Lemma 5.4

(1) QUPpi.is Prv) = QWPr.1» JPr 1)
(i) QU pw.i»2r.1) = QPris I Pi 1)

The factor &(k, I) has been chosen just so Lemma 5.4 would hold.
Q will be used as a kind of bookkeeping device to facilitate our calcu-
lations. Direct computation using (5.62) and (5.64) proves

YTt — P A Ge—11
Q(fs.03S50) = ( ;! }F{{_Zﬂu_ 2'!.-?1,—{—_: _S ) ) &(s, ),

g )5 (5.66)
In analogy with the procedure in Section 5-5 we define vectors f, ; by

T2 —2u—20 k), . -
_fs,.!: g i F{Eﬁ' = 2“ — Eﬂ] (JI }fs.ﬂi k:"-" === {}:- 11 21"- *

Each f, ; is a polynomial of order s ++ & in 2 and w, and there are n + 1
such functions of order z in 2 and w. Thus, if the set {f, ;} i1s linearly
independent it forms a basis for ¥, ® 7.

In exact analogy with Lemma 5.2 we have:
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Lemma 5.5
o = (B — 20 — 20 + 25) f 31
Y Se = —Rfspas
Bfow=(k—u—v+3)fesi, ks=012...

A comparison of Lemma 5.5 with (5.60) shows that for fixed s the vectors
fsxrBR=0,1,2,.., form a basis for the representation ., of sl(2).
Thus, the action of the operators T(g), g € P, on the vectors f; ;. is

[T() f. (2, w) = Eﬂ Bwro-s)(g) f, (z,w), ks =0,1,2,.., (567

where T(g) and the matrix elements By(g) are defined by (5.61) and
(5.22).

Lemmas 5.4 and 5.5 can be used to evaluate the quantities

Q(fs.x» for x)- The result is:

Lemma 5.6 Q(f.s,.ﬁ: y f:s’,.ﬁ:*) = as,s’ ak,k" NS,k

where
N — (SR TQ2s — 2u — 20)[(—2u — 20 + 25 — 1)I'(—2u)[(—20)
k= Tk — 2u — 20 + 2)[(—2u — 20 + 5 — DI(—2% + I(—20 + 5)’
k, kr, 5, 5’ % []j l: 2‘:'“'

According to this lemma, the set {f,; ;s & = 0} is linearly inde-
pendent; hence, it forms a basis for ¥, ® ¥, . Thus, ¥, @ ¥, can be
decomposed into a direct sum of subspaces, each subspace transforming
according to an irreducible representation of s/(2).

Theorem 52 1, ®@ 1,2 ) @ Turws-
g=0

We define the Clebsch—Gordan coefhicients E(w, /; v, j | 5, k) nonzero
only if s +~ k = [+ j, by

stk

ff"-k e Z E{u' "‘J; ﬂ: $ _|_ k — E | S: k}pi,ﬁ-}:—l H k: § ; G- (568)

=0
Thus,
Q(f&.k ’ PL.‘P’) = E(H, '{; ﬂij ] 5, k)é:('!:_}) SLS+E:-E : 5y k:, Ip_}': ,}f U- (5-69)

This relation allows us to invert (5.68) and obtain

gy — 5 B L0514 — 9EL))

g=0 N g, l+i—3

Fsttivs - (3.70)
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A generating function for the vectors f, ;. and, thus, for the Clebsch—
Gordan coefhicients E(-) follows easily from (5.67). Evaluating this
equation for the case where kR = 0 and g = exp(—5b_#7), we have

(bz + 1)2=s(bw + 125z —w)* = ¥ (2u == l}ﬂ — 25) W e
=0
or
oy gtk
(b:—r e l)ﬂu_s{bﬁﬂ AL I}Evn—s(g i ﬂl Z Z (ZH | 29 — 23) bk
k=0 j=0

+E(u, ;0,5 + k —j| s, R)2wstk—i,  (5.71)

where |bz| <1, |bw]| <1, s = 0, 2u, 2v not nonnegative integers.
Comparison of this expression with the generating function (5.21) for
the matrix elements B (g) yields the interesting relation

sl F(—1, —2u +s;8s — 1+ 1; —b)
I'is—1-+41)

(_I}SH(] _| 5}21:—3

=Y (2”1"2”_2“) bE(u, I;v,s + k — 1|3, k),
k=0 k

(5] < 1. (5.72)
If s — I+ 1 < 0, the left-hand side of (5.72) is defined by (A.5).

Equations (5.69) allow us to express matrix elements of 1, ® 1, with
respect to the p; ; basis in terms of the matrix elements with respect to
the f, ; basis. The result is

min[i+k, 1" +&" g{fr k.r]

Bﬁu}(g}BwJ (g) = z o
§=0 F b+ =—J

~E(u, s o, k75,8 4+ R —j)Blutr-a) (g),

+k—f. 1" +k'—F

geP, LI,kK =0

Or
k” F ﬁu—t ] o (E}EL —k. —T.i'-l-ﬁ,"{z)
AN}
min[i4+k, 1" 4+k"] Fo L
§=0 Ny sr—s

U I ki _—” u+t:—£—£:.-u—u+£'+.ic‘(z}'

- E{u} r; T, k' l.?! I - R = ] (f 2 _}.)l -+ t—3

(5.73)



180 5. LIE THEORY AND HYPERGEOMETRIC FUNCTIONS

The tensor products |, ® |, , D(2u) ® 1,, and D(2u) & |, can also
be studied by the above methods but this will be omitted since the results
are similar to those we have already obtained.

5.7 Differential Relations for the Matrix Elements

The matrix elements of the representations D(u, m,), T,, l,, and
D(2u) have been shown to be analytic functions of the group coordinates
(a, b, ¢) in a neighborhood of the identity element e of SL(2). Thus, if
Z is the complex vector space consisting of all functions of the
coordinates of SL(2) analytic in some neighborhood of e, it follows that
the matrix elements A;(g), B;(g), Culg), Djlg), determined in
Sections 5-1 to 5-4, are members of % . There 1s a natural action of SL(2)
on Z as a local transformation group. If g’ € SL(2) let P(g") be the linear

operator from % to % defined by [P(g’) f1(g) = f(gg') for all fe F and
g € SL(2) such that g’ and gg’ are in the domain of f. From this defini-

tion there follows the relation

[P(g1£2)/1(g) = [P(£)(P(g2)/)](8)

for g,, g, , £ in a sufficiently small neighborhood of e.
The action of P on the matrix elements is given by

[P(¢)Al(e) = Anlge) = 3. Aulg)An(),

l=—uo

], R integers;

[P(g")Bi:l(g) = Bulgg') = Ei By (£")Bi(2),

1, k nonnegative integers;
(5.74)

[P(£")Ciil(g) = Calgs') = ;Z Cin(&)Cn(8);

1, k nonnegative integers;

[P(¢)Dssl(e) = Dinleg) = 5 Dulg)Dile),

=0

2u a nonnegative integer, j,k =0, 1,..., 2u;

defined for g’, g in a sufficiently small neighborhood of e. Thus, for
fixed j, the functions {4} form a basis for the representation D(u, m,),
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the functions {B;;,} form a basis for 1, , the functions {C;,} form a basis
for |, , and the functions {D;;} form a basis for D(2u).

The Lie derivatives J*, |-, J? of the multiplier representation P are
defined by

£ (g) = 37 [Plexp tA)10) | .
17 (8) = 5 Pexp 110 | . (5.75)
1% (6) = 1 [Plexp tA911(8) |

for every f € # and every g in the domain of f. It is a consequence of the
discussion of Section 2-2 that these Lie derivatives satisty the commu-
tation relations

[0% 3= 285 [Bgi] =2k
and that they act on the matrix elements as follows:
PA;(g) = (m, + k)A4;(2)
P Au(g) = (my + kR — w)A; 314(8)

(5.76)
JA5(g) = —(m, + & + u)A; ,_4(8)
Crodin(g) = UT)™ 4 PP — 1) 4u(g) = u(u + 1)A5(8),
PBji(g) = (—u + k)Bji(g)
W — == R\B. .
J*B(g) = (—2u + R)B; .,1(8) (5.77)
J7B(g) = —kB;r4(g)
CroBir(g) = (J7]- + I*? — PP)Bj(g) = u(u + 1)B;i(g),
PPCii(g) = (u — R)Cj(g)
TCu(e) = —RC; 54
] (£) i 2—1(8) (5.78)
J7Cii(g) = (—2u + R)C; 114(8)
CroCin(g) = U™ + PP — F)Culg) = u(u + 1)Cyilg),
PPD;i(g) = (—u + E)D;(g)
T e == . o i k41
J'Dji(g) = (—2u + R)D; 5.11(8) (5.79)

]_Dm{g} = —'EfD,.r r—1(8)
Cr.oDilg) = (JT) + PP — P)Djilg) = w(u + 1)D;i(2).
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The above expressions yield recursion relations and differential equations
for the matrix elements, which can be evaluated by computing the Lie
derivatives J+, J? from (5.75).

Instead of the coordinates (a, b, ¢) for a neighborhood of e in SL(2),
however, we shall find it more convenient to adopt the coordinates

[«, B, w] such that
Lok

7
7 ¢ = et~*+F/2 ginh —

w i
a = el*t8/2 cosh 5 b = e'*P/2sinh

(5.80)

cosh w = 2bec - 1.

The complex coordinates [«, 8, w] are not defined for group elements
such that bc = 0, so they cannot be extended over the entire group
manifold. Furthermore, as we have shown in Section 5-1, the coordinate
transformation (5.80) is not one-to-one since distinct points in the
[« B, w] coordinates correspond to the same point in the (a, b, ¢)
coordinates. For group elements such that be = 0, however, the Jacobian

of this coordinate transformation is nonzero and the transformation is
locally one-to-one and analytic.

Thus if g € SL(2) has coordinates [«, 8, w] and

. ¥

g s ({:f d.ﬂ)
is in a sufficiently small neighborhood of e it is easy to verify that gg’
has unique coordinates [« , B, , w,] where

cosh w; = cosh w (a'd’ + b'c’ + ePa’d’ tanh w | e~Fc'd’ tanh w),

(ePa’(cosh w -+ 1) + ¢’ sinh w)(ePd'(cosh w — 1) + &' sinh w) 1/2
(d'(cosh w + 1) + €fb’ sinh w)(a'(coshw — 1) + e P’ sinh w)l ~’

E‘“lz&“[

(a’(cosh w + 1) + e sinh w)(a'(cosh w — 1) + e P’ sinh w)y!/?
efr — gb [
(d'(cosh w + 1) + b’ sinh w)(d (cosh w — 1) - beP sinh ) |
(5.81)
From this result and the definition (5.75) of the Lie derivatives we obtain
é 1 d ¥ d
+ — B | o2 INL2
g ( & = e @1y T @—17%2 )
d 1 d 2 d
- Bl__fao2 1 W At o i L —
= e onpac (E—1)2da (& —1)P" aﬁ) ”
Lo (5.82)
— 5
d* ¢ 1 o* o* *
Con = = lom H B b [~ — B P g )
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where ¥ = cosh @. As in Section 5-1 we assume that 2 takes values in
the cut complex plane where the cut runs along the real axis from
— o0 to +1. In particular, if 2 > 1 then (22 — 1)1/2 > 0,

According to the relations (5.12), (5.24), (5.31), (5.38), the matrix
elements A;.(g), Byu(g), C;i(g), D;;(g) can be expressed in terms of the
functions B;"(z). Substituting (5.12) and (5.82) into Egs. (5.76) and
simplifying we obtain the relations

4, ¥ Im
(—(EE _. 1}1;“2 = 3 — Ty s = ]}1;‘2) ?B;””*(z}

(2 (22

= (m -+ u -+ 1)(m — u)BrmH(z),

¢ 4 acdis T
(_(32 — 1) e (22 — 1)z (2 — 1]”2) Br"(2)
—Brm=1(s), (3.83)
d* &  2zmr +r? + m?
2 Ll L= r.om
((z 1) _|_ 2% Oz =2 __ 1 ) Eu {‘E]

= u(u = 1)BE™(2)

for all complex numbers u, r, m such that u +- m, u + r, are not integers
and » -+ m is an integer.

Similarly, from Egqs. (5.77) we find that (5.83) remains valid for all
complex numbers 7, m, u such that u 4 r, ¥ — m are nonnegative
integers and 2u is not a nonnegative integer. Finally, from (5.79) we
again obtain equations (5.83), valid now for all nonnegative integers
2u and all numbers r, m such that # — r, u + m are integers and

O0<u—r w-t+m =< 2u The derivation of recursion relations from
(5.78) 1s left to the reader.

5-8 Type B Realizations of D(u, m,)

In this section we study realizations of D(u, m,) such that J*, J3 are
the type B differential operators

¢
- il
-]-_ayj

d ]
+ — st IS S -
Jt = e ”(:]: e Iﬁy + ge ‘“), geE &, (5.84)
derived in Section 2-7, It will be more convenient, however, to introduce
new variables 7, z defined by 7 = y — in/2, 2 = —ie="® The type B
operators then become

I3 — e JE = et (g = s = I,gz). (5.85)
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To find a realization of D(u, m,), (0 < Rem, < 1, u 4 m, not

integers) in terms of the operators {5.85) we look for nonzero functions
fm(z!‘ T) = Zm(z)ew such that

me = M 5 = (m — u)fmd—l ’ I_fm = —(m + ”).fm-—l
Cyofo = (7T~ + J318 — 1) fn = u( + 1) fon

for all m € S where S = {m, - n: nan integer}. In terms of the functions
Z, (%) these relations become

(5.86)

(i) (z;f% + m — qg) Zm('g) = _'(m = ”}Zm+1(‘3)1

(i) (535 —m +98) Zn(®) = —(m + 0)Zns(2), (5.87)

2

(111) (32 ?i-é + 2gzm — 232) Z(2) = u(u + 1)Z,,(2).

As shown in Section 2-7, Eq. (iii) has as solutions the functions

Z (2) = (2qz)* e Fy(u —m + 13 2u + 2; 2g%),
Z! (2) = (2gz)¥e™™ Fy(—u — m; —2u; 2gz).

Expressed in terms of the generalized Laguerre functions, there are
solutions

(1) (Qq2) e =LEuD, (2g3),

5 (5.88)
(2) (2g8) e L2 (2g3).

From the form of these solutions it is clear that without loss of generality
we can set ¢ = . Second, focusing attention on solution (1), we note
that it is a generalized Laguerre function multiplied by the factor
(z)vtle~#/2. It would be more convenient for the study of Laguerre
functions if we could find Lie derivatives whose eigenfunctions were of
the form

falz ) = L2 (2)e™, (5.89)
without the extraneous factor. By transforming the type B operators we
shall bring about this situation.

Denote by & the space of all functions analytic in a neighborhood of
the point (22, 7%) = (1, 0). (The exact choice of (29, 7°) is not important.)
The function f,,(2, ) = 2*tte ?ALM 2 (2)e™ 18 2 simultaneous eigen-
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function of the operators J?, ', ; and is an element of %#. Define the
linear mapping <« of # onto # by [ f](z, ) = 2¥le?/%f (2, 1) for all
fe . The mapping ¢ can be considered as multiplication by the
function g(2) = 2%tle~?/2, Similarly, the map ¢—': # — %, the inverse
of ¢, is defined by [ f](z, 7) = 2% *3f (2, 7). Under ¢! the
ﬂigenfunctiﬂn fm is mapped into f,, where f,.(2, 7) = [0, ](z, 7) =

L1 (2)e™ is the function (5.89).

As was shown in Section 4-8, Lemma 4.4, ¢ induces a Lie algebra
isomorphism | — J? of the linear differential operators on % such that
(J) @) = @ (] £) for all fe F. The operators (J*)?, (J)° (J¥)°
can be computed from Eqs. (4.82) and (5.83):

5 5
BT - i L e { i :
(J+)e t(zag}tat 341;41),

() = 11 (5 — £ u + 1), (590
d
() =,

where ¢ = e". The operators (5.90) automatically satisfy the commutation
relations for the generators of s/(2) so they can be used to construct a
realization of the representation D(w, m,) on .%#. Thus, we look
for nonzero functions f,(z, %) = Z,,(2) in %, defined for all
me S = {m, + n;n an integer}, such that Eqgs. (5.86) are satisfied,
where now the differential operators are given by (5.90) and we have
dropped the superscript . In terms of the functions Z, (2) these relations
take the form

(22 — &+ (n + 1+ 1) Zy®) = (m — 0)Zpis(s),

(HEE — (m —u — ]}) Z.(2) = —(m+ w)Z,_ (), (3.91)

d* d

(255 + @+ 1)—2) o + (m — u — 1)) Z"(z) = 0

for all me S. The solutions are generalized Laguerre functions. In
particular,

Zo(2) = LE4,(2) (5.92)

satisfies (5.91) for all m € S. None of these solutions are polynomials in
g since m — u 1s not an integer.
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The above remarks show that the vectors f,(z,t) = L3 (2) ™
form a basis for a realization of D(u, m,).

This realization can be extended to a local multiplier representation
T of SL(2) on &%. Applying Theorem 1.10 to the generalized Lie

derivatives (5.90) we can determine the action of the operators
T(g), g € SL(2), as follows:

[T(exp —bF )1z 1) = (1 + be)yeresiosnf (F o ),
|6z | = 1,
[T(exp —ef)f 1z, 1) = (1 + clty ™ (a(1 + cft) S, 1 +0),
left] <1,

[T(exp 7 2°)f1(2,2) = f (2, €7),

valid for all f € %, (s, ) in the domain of f, and sufficiently small values
of |b],]¢], |7
If g e SL(2), Eq. (1.15), with d s 0 it is easy to verify the relation

g = (exp —b' F*)(exp —¢' F7)(exp 7' F7)

where b’ = bld,c' = cd, ¢’/ =d?', 0 <Im+’" <4nw. Hence, the
operator T(g) is given by

[T(g)f1(2,t) = [T(exp —&' F%) T(exp —c' #7) T(exp v £°)f (2, 1)

e —u—1
) gbet/(d+b)

= (d + bty (a+ =

old at + ¢
'f({mf +c)(d +bt)’' d + E?i)’ | ¢lat [ <1,

1btjd| <1, (5.93)

for fe % and g in a small enough neighborhood of e so that the above
expression is uniquely defined. The matrix elements of this multiplier

representation with respect to the analytic basis {f,,} are the functions
Au(g), Egs. (5.10), (5.12). Therefore, we have the identity

T@ foidd®t) = Y An@fosi®t), k=0, 41, £2,...

[e=—co
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which simplifies to

R

e —

. L'[,u'l -
r [(1 T o)1 1 cjat)(l + b7/d)

i i“m ( ;r )Ir(:(ifv—j:-lf 1)

F(—p—v+Lv+41;1+ 1; befad)
i+ 1)

lbe| <1, |cla| < |t| < |dfb], = (1 + bc)/a. (5.94)

L),

"T'his relation is valid for all u, v € ¢ such that v and i -+ v are not integers.
When / + 1 < 0 the hypergeometric function F is defined by the limit
(A.5). In general the right-hand side of (5.94) converges whenever the
left-hand side does.

We shall investigate two special cases of this identity. If a = d — t — 1
and ¢ = 0, then

g2/ 0+b)(] | b)—v=r-1Lw (l j_ b) = z (v }i_ f) (—b}ELIﬂ(E),
=0

|b| < 1.
Itfa=d=1t=1and & = 0 there follows

(1 + L (5—) = y " }L) L@, el < L

Each of these expressions is valid for all ., v € ' such that v and g - v are
not integers.

5-9 Type B Realizations of 1,

To find a realization of the representation 1, of s/(2), 24 not a non-
negative integer, by type B operators it is most convenient to transform
these operators into a new set of Lie derivatives especially adapted to
solution (2) of (5.88) (¢ = %). Thus, we set p(2) = 2% /2 and compute
the operators (J*)?, (J3)® where J%, J? are given by (5.85). (For this choice
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of ¢(2), the common eigenfunctions of (C; ()® and (J?)® will be constant

multiples of L2~ (2) 7, m € S.) The result is, Eq. (4.82),

9 0
(IR = I(EE—I—iEE—z—-u),
(J-)® =t (z a% = r% - u) (5.95)
(o) =t

Dropping the superscript ¢, we see that to construct a realization of
1 with the operators (5.95) it is necessary to find nonzero functions
fulz, 1) = Z,(3)t", meS = {—u -+ n,n =0}, with the properties

PBfn=mfn:, Jfa=m—8fun, Jlfa=—(m+1)fn;
(5.96)

Cl.ﬂfm == (I-I_J“ & I = Ja)fm =5 H(H -+ ljfm

for all m € S. These conditions will be satisfied if and only if the functions
Z, (=), m € S, satisfy the relations

(322 — %+ (n — 1) Zu(a) = (n — 0)Zna(o),

dz
(3 Ei— — (m -+ u]) Zu(2) = —(m + u)Z,,4(2), (5.97)
(3-;2 —(2u + z':} g +(m + ﬂ}) Z ) =0,

where Z_, () =0 on the right-hand side of these expressions.
Equations (5.97) determine the functions Z,, to within an arbitrary

constant. Indeed, for m = —u, =z2d/dz Z_,(z) = 0, which has the
solution Z_,(2) = ¢, ¢ a constant. We normalize this solution by setting
¢ = 1. For m = —u -+ n, n = 0, the functions Z,(2) can be defined

by the relation

I'(—2u I'(—2u
2ol = ful5s1) = F s (Pl ) = o =i (1),

A straightforward induction argument using (A.13) yields

I'(—2un! - _2u-1) -
Z k)= T — 24} L= (), n=201,2.., (5.98)

where the functions L)~?*~Y(z) are generalized Laguerre polynomials.

By definition the functions

I —
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satisfy the relations

Vfn =mfns  TPfu=0m—8)fun, T u=0.

Moreover, an induction argument utilizing the commutation relation
[J*, J7] = 2] shows that the functions f,, actually satisfy all of the
relations (5.96). Thus the solutions (5.98) satisfy Egs. (5.97) for all
m — —u -+ n e .S, and we have constructed a basis for a realization of the
representation T, of s/(2) on Z.

This realization of 7, can be extended to a local multiplier represen-
tation 7" of SL(2) on &, As 1s easily verified, the operator T'(g), g € SL(2
1s obtained from (5.93) by replacing # with —u—1. Thus,

[T()f )%, ) = (@ + bt)“(a + cfeyrer=/cos

21 at 1+ ¢
g ({m! Fo)(d L bt)’ (d - bt})’
lelat| <1, |bt/d| < 1, (5.99)

for fe # and g in a small enough neighborhood of e such that the
right-hand side of this expression is uniquely defined.

The matrix elements of the multiplier representation 7" with respect
to the analytic basis {f_,.,}, # = 0, are the functions B (g), , £ = 0,
(5.22)—(5.23). Therefore,

T foailles) = ¥ Bul@fwnliot), & =0,1,2,...

This leads to the identity

(1 =& %)Eu_k (1 ok %)k bt/ (d+b0 T (—2u-1)

| ((l + be)(1 + cfat)(1 + bt;’.-:f))

=, g] (—1)&T _‘é!!_(ij_y—k

F(—k, —2u+ L1 —k +1; bejad) .
Tt —*-1)

| btld | <1, d = (1 &+ bc)/a, (5.100)

E—Ett—l}(HL

valid for all integers & == 0 and for all # € ¢ such that 2u is not a non-
negative integer. When / — 2 + 1 <C 0 we use the limit (A.5) to define
the hypergeometric polynomial on the right-hand side of this identity.
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If a =d =1t =1, c =0, the above identity simplifies to

{1 = b}ﬂu—kgbzf{1+ﬁ}L;.c—2u—H (1 _'T_ IE') L Z (I —1;' k)( b);L}::L;u—l}( ),
=0

|| < 1;

For k = 0 this last expression becomes a well-known generating function
for the generalized Laguerre polynomials:

(1 —b)2ue=/0-0 = ¥ pULt-2u-1(z),  |b| < L. (5.101)
L}

(We have replaced b by —b and used the fact that L{—>-1(z) = 1.)
A simple consequence of (5.101) 1s

I'(l — 2u)

L'[—Ew—l]'([]} T I‘( zu)

-

When a =d =t =1, b = 0, (5.100) becomes

(1 + L2 (] - E) Z (k = 2;‘ = l) CIL2uD(),

=0

Consideration of type B operator realizations of the representation |,
would lead to the identity (5.100) again and give no new results. Hence,
we shall not embark on this study.

Finally, as the reader can verify for himself, there are no type B
operator realizations of the finite-dimensional representations D(2u),
2u a nonnegative integer, of s/(2). To construct a realization of D(2u)
operating on a space of functions of two complex variables it is necessary
to use type A operators.

5-10 Weisner’s Method for Type B Operators

So far the modified type B operators (5.95) have been used to construct
identities for special functions which are simultaneous eigenfunctions
of J® and C,,. However, these operators can also be used to derive
identities for eigenfunctions of C,; , which are not eigenfunctions of J°.
We make the following observations. If f (2, £) is a solution of the equation

Ciof = u(u + 1)/, 1e,

2 5. B
(zi —(2u + 8) o+t ) £ (5,2) =0,

022 ot (5.102)
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then the function T'(g) f, g € SL(2), formally defined by

is a solution of the equation CiolT'(2) f] = u(u + D[T'(g) f]. This
remark is true whenever the formal expression for T'(g) f can be inter-
preted as an analytic function in (&, £), and is a consequence of the fact
that C, , commutes with J*, J-, and J3. Furthermore, if fis a solution
of the differential equation

(% JF + 2]~ + %)) f (2, 1) = M (2, t)

for complex constants x, , %, , &, , A, then Eq. (1.25), Section 1-2, shows
that T'(g) f is a solution of the equation

(abxg — by + a?x,) ]+ + (—edxs — x, -+ d?x;) ]~
+ ((ad + be)xy — 2bdx, -+ 2acx)) BT (2)f] = A[T(g)f], (5.103)

for g € SL(2), Eq. (1.15). Finally, if Ciof(2,2) = w(u 4 1) f(, t) and
/ has a convergent expansion of the form f(z, t) = ¥ h,,(2) t™, then the
expansion coefficients are solutions of the Laguerre differential equations

(ﬁf- —(2u -+ z)i +m u)ﬁz (2) =0
dz? dz o i

These observations provide powerful tools for the derivation of identities
satished by Laguerre functions. (We are now concerned with the
operators (3.95) but the above comments apply as well to the other two
variants of fype B operators studied in this section.)

As an application of these remarks we choose f to be a solution of the
stmultaneous equations

Chof =uw+1)f, Jf=—f

Thus,
N[ B 2 , @ X
(:l) (E@—(ZH —I— E)E—Ftﬁ Th‘-)f{ﬂ, f) — ﬂ}
z d ¢

0 (2~ & 20 - o

The general solution of (ii) is f(z, t) = t~“e'h(z¢) where A is an arbitrary
function of =z. Substituting this solution into (1) we find that A must
satisfy the equation

ST} 50 ), e

¥ dw? dw
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This is a modification of Bessel’s equation and has a solution,

h(w) = w2 ] . (2w!/?), which is an entire analytic function of w.

Thus, f(z, t) = tel(zt)® V2], 1(2(2t)!/?) is a solution of (1) and (11).
According to the above remarks, the function

[T'(2)f (=, t) = t~(d + bt) exp [(H e bz)i 1\ ‘7] (2t)@utl)/2

2(=2t)/2 )
- I—Eu—] (E%E): lbr."d| < I:

satisfies the equations
CrolT'(£)f] = u(u + DIT'(&)f],
(=% 4 d* ]~ — 2bdJ°)[T'(g)f] = —[T'(g)f].

Since @™ ], (w) is an entire function of w for all m e &, [T'(g) f](=, t)
has an expansion in ¢ of the form

(5.104)

T 1) = ¥ b2, |bild] <1

Thus, T'(g) f is a generating function for the coeflicients %(g, 2). We
will determine these coefficients. Substituting the expansion into the
first equation (5.104) we find that £#,(g, 2) is a solution of the Laguerre
differential equation

a®

( F—ZH—FE}———f)ﬁlg,E} 1=0,1,2,..

The function [T’(g) f](, t) is regular at 2 = 0. In fact,

[T'(£)71(0,2) = t_uﬁjzz?u eXR GIJ:F.{:)‘

Thus, the functions %,(g, ) must be multiples of generalized Laguerre
polynomials:

(g, ) = j@L*Yz), 1=0,1,2,..

We could now use the second equation (35.104) to derive recursion
relations for the j,(g). However it is simpler to proceed in a different
manner. So far we have obtained the relation

a + bzt - 2(zt)1/?
l:d - f]f)_l EXp [{ d —I—)J."‘,'E L] (Ei)mﬂ-l_“’m.}-ﬂu-—l (r.'f{ I._] b:‘-‘)

— Yol  d = (1 +bo)a, |btld] < 1.
[=0
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At 2 = (0 this relation becomes

| 2u =1- By if !
a0 (53) = L0 Tzt Wl <1.

The above expression is reminiscent of the generating function (5.100)
for generalized Laguerre polynomials. In fact when k = 0, (5.100)
becomes

1+ 25" e g 255) = () v o <

=0

Comparing these two expressions we find

ac ) ! a—E“( —ab )’-LE_%_”

Ji(g) = exp (1 + be) T(I — 2u) I+ be [b{l ibﬂl]'

1=0,1,2,.,

where 2u is not a nonnegative integer. For ¢ = 0, the result of this
computation is the identity

a - b2)t
(1 -+ abt)? exp [{ﬂ_l o b)t] {.-:IEL*I}‘E“Jfl”Ef_Eu_l(

2(=zt)1/2 )
al L bt

( HE?]LL{ —P ll(ﬂfb}L{'Eu"l}(E)tl
abt| < 1. (5.105)

= E m_ 2u)

Ifa=1,5 =0, (5.105) becomes

t

ef(zt)m““”ﬂj I(Z(Ef)”g] = Z L{—Eu—l}(z) F{I

while if @ = y'/2, b = iy~1/2, it reduces to the Hille-Hardy formula

(1 — £)~Y(—y=t)2=+1)/2 exp [ f{y i :.a.r)] il ( zﬂl:yit}:g)

Li-u-(y)Ltu-D(yet, 2] < L

; r(s - Zu)

As a final example we apply T'(g) to the function f(z, t) = L; 2% '(2)t™,

M-

m, u € €. Clearly C, of = u(u + 1) f, J3f = mf. In the case where g is
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in a small neighborhood of e we have already obtained identities for f
from the representation theory of s/(2), Eq. (5.94). However, the choice

e~ )

violates the conditions of (5.94). In this case we can write T'(g) f in the
form

t'”(] " t}u—mg—ztjil—E}L;it;—l (1 ‘f f): | i | < 1,
which has an expansion in terms of =%+, [ = (, 1, 2,... . The coefficient

of v+l is ¢, L7* () and the constants ¢; can be determined from the
expansion by setting 2 = (0. The result is

2t
(l - f)u_mE'_'Eth“_“L;ii_l (l = t)

_ % ' —m + 1) (m — u) o
= Eﬂ(—t}! T(—2u - DI'(u —m — 1+ DIu +m—+ 1}1;12 1(2),

(2] <1,

a generating function for the generalized Laguerre polynomials,
As the reader can prove using (5.103), the examples studied here are
inclusive in the following sense:

Lemma 5.7 (Weisner) If f is a solution of the equation
(]t +x]+2,]3) f(2, t) = Af(2, t) for complex constants x; , x, , X3, A
such that x? -+ 4x,x, # 0 then there exist u, € &, g, € SL(2), and a
function ky(2, t) such that f = T'(g,) Ay and p,J3h(2, t) = ARy(z, ).
Moreover, if x5 4 4x,x, = 0 there exist p, € , g, € SL(2) and a function
hyo(z, t) such that f = T'(g,) Ay, and p,Jhy(2, 1) = Ahy(z, 1).

Lemma 5.7 1s also applicable to the work of Section 5-15.

5-11 Type A Realizations of D(u, m,)

The type A differential operators determined in Section 2-7 form a basis
for an algebra of generalized Lie derivatives 1somorphic to s/(2), which
operates on a space of functions of the two complex variables x, y:

. el ¢ q
= o gy s
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In terms of the new variables ¢, 2 and a new constant r defined by ¢t = 7e¥,

z = cos x, r = —1q, the type A operators take the form
d
IE = I"E'}E' )
) a (5.106)
d 2 r
gl - e - Ax1/8
e g F T E L =)

Toconstruct arealization of the representation D(u, m,) (0 < Rem, < 1,
u -+ m, not integers) using the operators (5.106) we must find basis
vectors f,(2, t) = Z,(2) t™ such that

]ﬂfm — mfm ) ]+fm = [:??I 5 H)fm+1 3 ]_fm = —(m ¥ i u)fm—] ?
(5.107)
Crofm =TT + PP — ) fu = u(u + 1) f

for all me S = {m, + n: n an integer}. These conditions are fulfilled if
and only if the Z, (=) satisfy the relations

(i} (_{zﬂ =i !)”2 iii 1 {Eiﬂi_—li):jm) Zm(g) = {?ﬂ - H}Zm+1{‘3):
) (= — et (;m_*'l; 5) Za(2) = (m + 0)Z, (), (5.108)
(i) (62— 1) 55 425 2 — ZTELTIIN 7 ) — i+ 12002

for all m € S. As shown by Egs. (5.83), the functions

Zp(2) = T +m + 1)B™(z), mes,

satisfy these relations for m - 7 an integer. However, it is easy to verify
directly that the above functions satisfy (5.108) even if m - 7 is not an
integer. (As usual we assume these functions are defined in the z-plane
cut along the real axis from —oo to +1. In (5.108) the branch of the
square root is chosen so that (2 — 1)1/2 >0 if 2 > 1.) Thus, for a
fixed complex number 7 the vectors f,,(2, £) = I'(t + m + 1) A 3
form a basis for a realization of the representation D(u, m,) of si(2).
We can use this realization by #ype A operators to induce a local multiplier
representation T of SL(2) on &#. Here # is the space of all functions of
the complex variables 2, ¢, analytic in a neighborhood of the point (say)
(2% 2°) = (2, 1). ('The exact choice of (2?, #) is not important.)
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According to Theorem 1.10 and (5.106) the operators T(g) on & are
determined by

T | 2 r/2
T 679400 = [ =i~

2btz )~1rz]=

f [z +bt(a® — 1172, ¢ (1 b2 + —

22 . 1)1/2 L otz — I1N7/2
i i A v [EEE Vi H”E T fi_lEz + H

- [z + et (22 — )12, ¢ (1 Ry, (Ezzf:i_lﬁug)m],
[T(exp 7,23 f(z, 1) = f (, et),

valid for fe Z, (2, t) in the domain of f, and | & |, [ ¢ |, | 7 | sufficiently
small.

If ge SL(2), d # 0, then
g = (exp —b' fF)(exp —¢' F~)(exp 7' F7)
for ¥ =bld, ¢’ =¢d, e’?=d?, 0 <Im7 <4nw. Thus, T(g) 1s
defined by
[T(g)/)(=,1)
= [T(exp —b' #")T(exp —c' F)T(exp v 77)f (2, 1)

rd(=22 — 1YYE - btz -+ 1} ﬂ(gﬂ | e ]]1;2 5—1(2 | 1} r2
= h(dEzE — lilf? i biEz — 1})(;:1(32 — 1)1/ _1|: :::;—1(3 4 1))]

f }z L Qbez + abt(z? — 1)/ + cdtY(z® — 1)1,

t [{H(gz — 12 + etz — 1))(a(s® — 1'% + ct (= + E)}]”Ei
(d(z — )72 + bi(= + D)(d(z® — DB+ bi(z — 1)) 1 |’

bi(z + 1 Yz + 1 g
d(;{f— l}ljfﬂ ‘ z(zz(i 1)1;]:-3 <z, f E, (5109]

=11

With respect to the analytic basis {f,,(z, f)} the matrix elements of this
local representation are the functions 4,(g) given by Egs. (5.10), (3.12).
Thus,

[T foid® ) = 3 Aule)finil2:?),

[=—a0

=0 iy, 200 (5.110)
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Rather than attempt to work out the detailed consequences of (5.110)
we consider only a few special cases. From Egs. (A.9), (iii) it is clear that
the function B7"(z) is analytic and single valued in the right-half plane
Rez > 1. (If r +m = 0, B,™(z) is analytic and single valued for
Re z = 0.) For simplicity we shall restrict ourselves to the half plane
Rez = L

Ifa=d=1t=1,¢=0, Eq. (5.110) can be written in the form

41 (r—im) /2 - (—r—m) /2
(1 Il EJ{H i 1)2) (1 1 E‘(E 1) ) m;.m[z 116 5{32 — 1}1{2]

= @ — 1"

validforRez > 1, |z + 1)/(z — )| < 1l.Ifa=d=t=1,b = (,

we have

5(3_1} (r4+m) /2 E(E _| ]) (—r+m) /2 o e R ’
(™ 14 ) e -

o [
= ¥ —-#la),

=0

for Rez > 1, | ¢®(z + 1)/(z — 1)| < 1. Finally, for a = d = cosh w/2,
b = ¢ = sinh w/2, p = cosh w, t = e, there follows the identity

e — D& — Dz (o — D)z — Ly r-mp
(1+e [EE o 1}; 1) ) (1+e (ﬁ I 1); T 1}] )

-(1 1 g [{P — 1)(z + 1) 1;2):_.;%”2

(b F 1) — 1)
g 4 g [0 = (e o Dy o-me
(1 +¢ L{p T —1) )

- Bm2p 4 (22 — 1)2(p2 — 1)1/ cos a]

. Z ﬁ;r:;—i,m(P)ﬁE ”‘“{z)&“ﬁ,

[=—2cn

where Rez > 1, Rep =1, |(p— I)(=z+ 1)p+ 1)z — 1)1 <1,
o real. If m — r = 0 this last formula reduces to the well-known
addition theorem

B, [zp + (22 — 1)V2(p% — 1)M/2 cos o] = z BL(p)B-H(2)et

I (30
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for generalized spherical harmonics, valid for Rez >0, Rep > 0,
|arg(z — 1) <=m, |arg(p — 1)] <=  Here, 8Bl(z) = By Y(2),
B,(2) = BY(2). In all of the above equations u -+ m are not integers.

Another interesting variant of the identities (5.110) is obtained by
restricting & = x to the real interval —1 << x << 1. We define functions
P;'™(x) on this interval by

P:;,m(x) . E—z'r.-[{m+ﬂ;ﬂ]$;.m(x =t 7 [])

i (] e I)[mrﬂm (l — x){m+r}lf2

2 2
Flu+m+1,—ut+mm+r—+ 1;(1 —x)2)
I(m +r + 1) L)

where B, ™(x -+ 7 - 0) 1s the limit value of B, ™(2) as & approaches x on
the upper side of the cut between —1 and 1. By inspection these
functions have the properties

P:;,m(x} — PEE'T[.I}, P‘ru, [: Pr 1 1(_1.)

Moreover, Py—"(x) = PJ(x), P)%x) = P,(x), where PJ(x), P,(x) are
Legendre functions (Erdélyi et al. [1], Vol. I). The reader can derive
identities for the functions P["™(x) directly from (5.110).

Up to now we have used Zype A operators to obtain identities for the
B functions. However, these operators can also be employed to derive
identities directly for the hypergeometric functions. The simplest way to
proceed is to return to the original form of type A operators established
in Section 2-7:

8 8 8 g
3 b il Al ST L%,
] ay’ J : (‘Lﬁx cﬂtxfﬁy +sinx)’
&? & . &
G = —mm O e (9 TR m”ﬂy)

The function
hy(2,9) = (1 — 2)"m-02zuF(m — u, —q — u; —2u; 2)e™;
z = sec¥(x/2), U [ o4
is a simultaneous eigenfunction of J? and C, ; :
13h,, = mh,, , Ci.ofty = u(u + 1A, .

We will transform these type A operators into new operators with simulta-
neous eigenfunctions of the form A, (2, )= F(m—u,—q—u;— 2u; z) t™.
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The procedure for carrying out this transformation is clear. We introduce
a new variable ¢ defined by ?z = (1 — 2)1/2¢¥ and the function
@(2) = = %1 — =z)~2/2, Then

[@7h,)(2,y) = F(m —u, —q — u; —2u; 2)t™ = h_ (3, t).

The transformed operators (J®)? (J*)% (J7)® in the variables z, ¢ are
defined by Eq. (4.82) and are easily computed to be

d

Py =ts, (Hr=t(s

72 &t )

g Ty

, (5.112)
(J)e=1¢2 (z{l = E’)E = fﬁ + 2(g +u) — “)-

By construction these operators satisfy the usual commutation relations
for the generators of s/(2) so they can be used to form a realization of the
representation D(u, m,).

To construct such a realization we must determine nonzero functions
fu(2, t) = Z,(2) t", me S = {m, | k: k an integer}, such that

(sdii 1 ) Zy(8) = (m — 0)Zp(2)
(21 — 2) = + 2lg + 1) — (m + 1) Zu(2) = —(m + W) Zp1(2)
(501 — )+ [—2u — a(m — g — 2 +1)] - —( — m)g + 1)) Zy() =

for all m € .S. These equations have the following solution, regular at
2 =AY
Zw(z) = F(m — u, —u — q; —2u; 2).

Thus, the functions f,(z,1) = F(m —u, —u — q; —2u; 2)t™, me S,
form a basis for a realization of the representation D(u, m,) by the gener-
alized Lie derivatives (5.112). Clearly these operators induce a local
multiplier representation T of SL(2) on the space (¥ of functions f(z, ?)
analytic for (z,¢) in some neighborhood of (2% #°) = (0, 1). The
operators T'(g), g € SL(2), Eq. (1.13), acting on (¥ can be computed from
the results of Theorem 1.10:
i — g+
[T(@)f 1z, 1) = (d + bi) a + 5 (a — 1)

t

o ¢ —+ at
'f[{d+bt){ar. —ez—1))"d + .&:]‘
1btjd]| <1, |elat] <1, |e(z—Dat| <1, d= (1 +be)ja. (5.113)
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With respect to the analytic basis f, (2, ) computed above, the operators
T'(g) have matrix elements 4,(g), Eq. (5.10). Thus,

[Tj{g)fmﬁk](zi "l’:} i Z -‘qzk(g)fmﬁl{:g& I),

| £= Y

which reduces to the identity
: -~ 2(1 —y)
F [m, s (I —(z — Do + T—lyﬂ
(1 + )1 4 Tyl — (2 — 1))
. i g IN—v4+m-+1) Fv—m—1Lm; —141;y)
I(—v +m+1+1) T3 1)

l=—ug
-F(m + 1, p; v; 2),
Iyl <1, |7l<1, |[(z—Dr|<1, =#]1, |vy—2z|<l (5114)

valid for all m, u, v, €  such that m, —v -+ m, are not integers and —v
is not a nonnegative integer. (The last restriction on v can be avoided if
we divide both sides of the identity by I'(v).) If ¥ = 0 this identity
becomes

P (m, %3 T —57) (L 7 = G = D

_ Ny oa(m— s .
_g}-r( , )F(m l, u; v; ),
g#1; |E—1r| <1 |7 < 1.
If, on the other hand, we set y = x7 and let + — 0, we obtain

x
1 4+ &

F (m, TR ) (I +x)y™ = i (—x) (m +j - I)F(m + 1, p; v; 2),
1=0

L& | <=yl = |i]-— 2

5-12 Type A Realizations of T,

To construct realizations of the representation 1, , 2u not a nonnega-
tive integer, using the type A operators (5.106) we must find nonzero
functions f,,(z, t) = Z,(2) *, m = —u, —u + 1,..., such that

Jﬂ_ﬁ'n = mfm y ]_'fm =3 (?ﬂ' = 1"!).;’(m+1 3 ]-_fﬂt L —l:??'.' J'_ u)fm—la
Ciofm =] + BIF— P fu = wu + 1) fis -
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The above conditions are equivalent to Egs. (5.108) for the Z, (2) where,
on the left-hand sides of these equations, m takes the values —u, —u - 1,
—u + 2,.... From (5.83) it follows that these relations are satisfied by

[ = ]]u+m
I'(m — u)

7 (%) — Brm(z), m=—u,—t+ 1., (5115

for all r € ¢ such that # — » is a nonnegative integer. Moreover, the
functions (5.115) actually satisfy the required relations for all » € | as
can be verified by explicit computation. Thus the vectors

( —1 }ﬂ- =Py i—k —u+k
Froinl®, 1) = e 3 Boru-k(g)-utk, k>0

?

form a basis for a realization of the representation {, by the type A
operators (5.106).

These Lie derivatives determine a local multiplier representation 7' of
SL(2) on & by operators T(g), g € SL(2), Eq. (5.109). With respect to
the analytic basis {f_,.x(2, t), & = 0}, the matrix elements of this local
representation are the functions By (g), Egs. (5.22)—(5.24). Hence,

[T(8) foweal( 1) = 3 Bi®) fousi(®:8)y °=0,1,2. (5.116)

Since B} ™(2) is analytic and single valued for Re 2 > 1 the following
identities are easily obtained from (5.116).
H g—di— &= 1..c=— [} thén

f}{g - I) (r—m) /2 b(E = 1) (—r—m) (2 D , it
(1 = (z® — E)”E) (1 = (= — I)”E) B=ri—M(x L h(a®— ] )42

E} —r —m—1
.-!_ (%),

valid for Rez > 1, | 6*(2 + 1)/(z — 1)] << 1 and u + m a nonnegative
integer. If a = d =t = 1, b = 0, there follows

L"[:E' - 1) (r+m) 2 i-'{.E' -+ 1) (—r+ne) /2 i " 18
1 i 1)1;2) L -+ 1)”2) B-rom(z 4 (a2 — 1)12)

M4 : 4 u P{m — H} - =i
Z(_’:}( : )F[m—u-ﬂf]mu (2),

L=

Rez >1, |&z+1z—1)]<1,
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where # 4 m is a nonnegative integer. For a = d = cosh(w/2),
b = ¢ = sinh(w/2), p = cosh w, t = ¢, there follows

_ — 1)(z — 1)Lz trim) /2 . — 1z — 17L/2y (—r—m) /2
(Sl M R L o

, = - 1/2y (—r+m} 2 _ — 1) = 1/2y (r—m}/2
(e ) (+elEmesy )

- By 4 (22 — 1)V3(p? — 1)2 cos of

o
— z E_; TN A —m(P)ﬂﬁ;r,u—E(z)Ei{-u-—m+i£]lm’
i=0

valid for Rez > 1, Rep > 1, [(p — 1I)( + 1)(p + 1) Xz — 1)1 | < 1,
« real, and # - m a nonnegative integer,

There is a special case of the identity (5.116) which is worthy of
consideration in its own right. If » = 0, v = 2(2* — 1)~1/2 the basis
functions BY** considered as functions of o, are multiples of
(1 — o?)™/2C;"(v) where the Ci" are Gegenbauer polynomials, (A.9).
Rather than obtain identities for Gegenbauer polynomials by manipulat-
ing (5.116) we will start at the beginning and derive the identities from
a realization of the representation 1, of s/(2). Thus we introduce the new
variable v = 2(2* — 1)71/2 into expressions (5.106) for the type A4
operators. In terms of the variables (v, t) the differential operators become

d » 5 d o
T8 — IEE , J£ = 21 ([@ —1) == Lot E), (5.117)

where we have set 7=0. To realize the representation 1,,, 2u 40, 1,2 ...,

with these operators, we must construct basis vectors f_,,.(v, ) =
W_,(v) %% k = 0, such that

J:‘y-u+k = (_u e k)f—mu:r. ’ ]+f—ac+k = {—2u T k)f—uﬂﬁ-l )

(5.118)
J_f—u+i: _— _kf—u+i:—1 1 Cl,l}f~u+k == H{H + l}f-u-t-k .

The functions W_,,,;(v) are determined to within a nonzero multiplicative
constant by these conditions. Indeed, J-f_, = 0 implies

dw_,

St dv

—uvW_, = 0.
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This equation has the solution W_,(v) = (22 — 1)7%/2, unique to within
a multiplicative constant. The functions W_,_.,(v), 2 = 0, can now be
defined recursively by the formula

W_srilo)t ™ = (=2u + k — 1) (W5 (v)tH1)

- = i (2;2:3 5 U — 1ynes), (5.119)

From the explicit expression for the differential operator J* it is easy to
verify that the functions W_,,,(v) can be written in the form

I'(—2u)k!
W—u-&k(ﬂ} — P{:EZH j_ b

)(E«‘E — 1)™RCM(v),

where C};¥ is a polynomial in v of order k. Furthermore, it follows from
the commutation relations of the operators J+ ]J® that the vectors
frwir(v, 8) = W_, (v) %%, k > 0, defined by (5.119) do in fact
satisfy all of the conditions (5.118) and form a basis for a realization of

Ty - Writing conditions (5.118) in terms of the polynomials C;%(v) we
find

(1 — o) 52 —o(k — 20)] Cp(o) = —(k + 1C4 (o),

d
[(1 — 2%) = + ok Ci4(e) = (k — 20 — 1)C4(0)
[(I — *er}ﬂ —(1 — ZH]ﬂi + k(k — EH]] C%w) =0

dv? dv » '
This realization of 1, can be extended to a local multiplier representation
T of SL(2). The action of the operator T(g) on a function £, analytic in

v and £, can be obtained formally from (5.109) by setting » = 0 and
introducing the new variable » = 2(22 — 1)~1/2. The result is

L2 v(1 + 2bc) + abt + cdt?
[T(&)f 1w, 1) = 1 [[[Zﬂ[l + be) + abt +- cdt)[2vbc + abt + cdt™Y] + 1)1/2°

at (l + (c/at)* -+ Z{E,fatjw)lf
d \1 + (tb/d)* + 2(tb/d)v

2], d = (1 + bc)a, (5.120)

convergent for g in a sufficiently small neighborhood of e. As before, the

functions By(g) are the matrix elements of T(g) with respect to the
analytic basis {f_, .}:

[T(e) foasr @ 2) = 3. Bul8)f wns(o, 1)

L=0)
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After simplification, this expression leads to the identity

(14 322 — 2yrlo)F/2(1 + 72 — Q7o) kk/2

_Cu[ ol ¥} —m—Fr ]
E LT 4 922 — 2y ) 3(1 4 72 — 270)L2

S i) Bk, D o ol — ko 1
—— -k
=2 7 I'i—k 1)

=0

“"')Cﬁm, E>0, (5.121)

valid for |72 — 270 | <1, |+%9% — 2+ o | <1, and 2p #
0, —1, —2,... . If y = 0 the identity reduces to

a0

(k2 O V— T ) [+ k
(Lod? ety [(l + 7% — ZﬁJ]UE] i E{‘}Tl( [ ) Clna):

By construction, C(2) = 1, so for & = 0 the above equation yields the
well-known generating function

(1 +72—2m)+ = Y 7'IC¥u).
1=0

For # = 0 it follows that

(147 = ), 7C(0),
L=t
whence

0 if [/is odd,
Ci) = (_k ) if | = 2k is even.

Another useful relation for the Gegenbauer polynomials can be obtained
by setting = = —y/t in (5.121) and going to the limit as y — 0. The
result is

i il v ¢ S 2tk —1
(1 2% - 2e0)* 20k [(] '—_tﬂ+2m}1fﬂ] _Eﬂ( J )I'C'Ef_l{ﬂ}.

If v =0, x = #(1 + #*)~'/% this expression takes the form

. - s Wk =]
Gyl = T a1 —aty-are (F T 5T Tk (o),

i=0
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or
Con(x) = é} x#(] — aB)F (ZH +22f = ])(kr—“f)’
CE (%) = Li NRUFL(] — y2)ht (2;_:;;'&) (k_—ﬁ .‘_’)'

5-13 Type A Realizations of |,

Fundamental identities for the Jacobi polynomials can be derived
from realizations of |, , 2u not a nonnegative integer, by the type A4
operators (5.112). According to the usual procedure, in order to construct
such realizations we must find basis vectors f,.(3,t) = £,(2) ™,

m=u—=%k k=020,1,2,..., such that

d A
(5 — k) Zoui(B) = —RZy_11a(2),

(21 —2) = + (g + 1) — Qu — B)) Zuala) = (4 — Bus(a), (5122)

(z(l — 2) ?j;— + [—2u + =2(k + g + u — 1)] é — k(g + u}) Zi—ilz) =0,

These relations determine the functions Z, ,(2), # = 0, to within an
arbitrary constant. Indeed, the relation =z d/dz Z,(z) = 0 implies Z,(?)
is a constant function. If we set Z (2) = 1 and use the second of Egs.
(5.122) to define the functions Z,_,;(z) recursively, we easily obtain the
result that the eigenfunctions are Jacobi polynomials,

2oy (2) = F(—k, —q — u; —2u; 2), R0 2y

and that these polynomials satisfy all of the relations (5.122). The Lie
derivatives (5.112) induce a local multiplier representation 7 on (7.
With respect to the analytic basis {f,_.(z, ) = Z, 1(2) t**} computed
here, the operators T'(g) defined by (5.113) have matrix elements

Culg), (3:31):

[T'(&) fusl(®:t) = 2, Cul@) fumr(®: ), k=0, 1,2,...

=0
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This expression is equivalent to the identity
(1 + (1 — (5 — DAL 4 7

. 3(1 —y)
P( o b TL—@——ﬂﬂl+ny

e I'—v —k+1D)F(—kv+L1I—Fk+1;y)

. 1k
ET T(—v — 1+ 1) T(I—kF 1)
- F(—I, w; v; 3),
i —2p| <4, 7] <l E=0,1,2.. (5123)

valid for all u, v € € such that v is not a nonpositive integer. For y = 0,
this identity simplifies to

B U (_k’ fe5cs = (;—— I]T)

oo

=3 A (_" ;— k)F(—k — 1, py v; 2),

1=0
(2 — 1)y | <1, |=|<L

In particular if 2 = 0 we have a simple generating function for the
hypergeometric polynomials:

(1 —(z— )%l +7pr= i 7t (_;) F(—1, p; v; 2). (5.124)

Finally, if we set y = wr in (5.123) and take the limit as 7 — 0, we obtain

(1+ﬂmﬁt—aﬁﬂul_rw) i ()51 b s ).

I=0

5-14 Type A Realizations of D(2u)

We shall now construct realizations of the finite-dimensional repre-
sentation D(2u), 2u a nonnegative integer, in terms of the generalized
Lie derivatives (5.106). In order to compare the results more easily
with the computations in Section 5-16, we choose basis vectors p,,,
m = —u, —u + 1,...,u — 1, u, for the representation space such that
the action of the infinitesimal operators 1s

Ppm =mpr,  Jbm = [( —m)u +m + D]y,
]_Pm = [(” — m —+ ])(” + m)ll"rgpm—l ? C[}.Ipm = u(ﬂ . lme!
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see (5.41). Hence, to construct a realization of D(2u) with the operators

P _E" = L[ el : i * o 4
L t ot’ = ( =Ly oz + (2% — I)UEt ot i{:;w.rE — I)l#‘ﬂ)
we must find basis vectors p,(z, ) = W, (2) t®, m = —u,..., u, such
that
(—(22 - I)”ﬂi L el e, AT L ) W
dz ! (L’E — I)II."E {gﬂ S 1)1,-"2 m(ﬂ}
= [(u — m)(u + m + D)'PW,, (=),
d 2m ¥
- e -
[~ — 1 = g e 7) Walz)  (5.125)

= [+ m) — m + DR,y (),

d? d 2rmz 4 2 L m?
2 i et e i
((E 1) dz? TS dz z2 — ] ) Wonl2)

= u(u + )W, (=2).

(We assume the functions W, (2) are defined in the z-plane cut along
the real axis from — oo to +-1.) These relations determine the W, (z) to
within a multiplicative constant. In fact, from the first of the above
equations we have

d uz - r
PP PO Y

(_(32 — )2 ) W,(z) = 0;

whence

Wie) = (o) Co) = el + DBG)

where ¢, is a constant. Using the second of Eqgs. (5.125) we can define
the functions W, (=) recursively from W,(2). A straightforward

computation gives
(_l}u—m
[T s [(# + n)( — n + 1)1

=l

Wm(g ) = C;

(3 = 1)—[m4-r}fﬂ(z _|_ ]}—{m—ruz

Nu +r +1) 1‘-‘-- [ (u + n)

= ¢ (—1)*=""™(u + m)!
U L (i—n+ 1)

1/2
] %;ﬂm(g),

=141

(5.126)
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form = —u, —u + 1,..., u. However, we must still satisty the condition
Iopiz= Qior

d r — uz

(2 — 1y -+ o o) Wou(z) = 0.

According to the first expression (5.126), this condition can be satisfied
if and only if # 4 r are both nonnegative integers, i.e., if and only if
¥y = —u, —u + 1,..., u. For convenience we fix the constant ¢, by the
requirement

Er_

ey o
Thus,

u + m)! (u -+ )yt
Wale) = (=tpr [E Lo EE AT s,

r, m —_ -_u’, _ﬂ + I-,-rr-:. u

The normalization constant ¢, has been chosen so that the eigenfunctions
W,.(2) will be readily comparable with the matrix elements of irreducible
representations of SU(2) (Section 5-16). From the commutation relations
of the operators J+, J3, it is easy to check that the functions W (2),

m = —u,..., u, satisfy all of the equations (5.125). Thus, the vectors
Pz t) = W, (2) t™ form a basis for a realization of the representation
D(2u).

As we have shown earlier, the type A operators (5.106) determine a
local multiplier representation 7 of SL(2) in terms of operators
T(g), g € SL(2), defined by Eq. (5.109). With respect to the basis
vectors p,(z, 1), the matrix elements of this representation are Q.(g),
Eqgs. (5.43), (5.37). Therefore,

(T@pseal( ) = 3 Qulosi(®:8), h =0, 1, 20 (5127)

The following consequences of this identity are easily derived: If
a=d=1t=1, b =0, then

ol — ]} {-r._u—r-kll.fﬂ E(E =1 ]) (—r—u+k) /2 e
(] i (E‘E = 1)1;2) (1 i (32 — I)IIE) BL— (2 + oz — 1)H7)
[ 1_1
EL,—HH(EL
g;] (k —I)!

Rez>1, |f&z+Diz—1)| <1, k=0l,..,2u4
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while if @ = d = cosh(w/2), b = ¢ = sinh(w/2), p = coshw, t — e,
there follows

1 — Dz — 11/ tr+m)/2 . — 1Mz — 1)1/ (—r—m)/2
S s = B (R = 1

_ - 1/2, (—t+m) /2 = 1/2y (r—m)/2
el e I (20 o

21
2 mz,m[gp _|_ (32 __ 1}1;2(P2 [l ])1,-’2 COos D:] - z ﬂa:-:-—!,m(P)%;,—u+f-(3)gﬂ—=ﬂ—ﬂb-!-”m,
=0

Rez>1, Rep>1, [(p—1)z+ D+ D) z—1)1]| <1,
areal, m = —u, —u + 1,..., u
In terms of the functions PJ'™(2) defined on the real interval

—1 < x < 1 by P™(x) = eIl 2Ignm(x - 40) (see (5.111)) (5.127)

1mp11{35 the relatmns

fh (r—u+k) /2 G (—r—u+k) /2 .
(l — 7 tan —2-) (I -+ 7 cot i) Pri—ttk(cos  — 7 sin 6)
B k=l
="y = Pr—ttl(cos 6),
=0
-rcntj‘ == TIHHE = 1, O=<St-<wm k=0 1..2u
g ? ﬁu, ir-+-m:|-,|’!3( 0 E E {—r4m) /2
(l—-E tanztanzj 1 +e tanzmtz)
. ” @ E {r—m:l,-’ﬂ'.( i ? @ (—r—m) /2
(I - e tanimtz) Il —e tanztani)

* P1™(cos 6 cos ¢ — sin 6 sin ¢ cos o)

2u
= Y Pu-bmi(cos @)Pri—+(cos f)ei-u-m+ls
L=0)

@ g ‘ e 0 ‘
tan ~ tan - tan = cot =
aﬂztaﬂ2 =] anzcu 5 <= [
0 <9,0<n areal, m = —u, —u + 1...., +u.
In all of these equations 2u is a nonnegative integer and r = —u,

—u -+ 1,...,u
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5-15 Weisner’s Method for Type A Operators

The identities for the hypergeometric functions derived so far have all
been related to local multiplier representations of SL(2). We can follow
Weisner [1], however, and use the operators (5.112) to derive identities
which are not associated with local representations. The basic fact to be
noted is: If f(z,¢) is an eigenfunction of the operator C,,, i.e.,

Ciof(2 t) = u(u + 1) f(2, t), where

+ 2[—2u + =(qg + 2u — 1)] %

a
+ =2(g + u:}tﬁ —zu(u + q) + u(u + 1),

then C, [T'(g)/] = w(u + 1)[T(g) /] where

[T'(g)fl(=,t) = (d + bt)* (ﬂ ; %)—ﬂ (a - c(z I— 1})r1f+-u
Il ’”Hﬂi =) a %] Ea.(s113)

This is true because the operators (J+), J? commute with
Cro=I"T"+ PP =1,

and 1s valid for all g € SL(2), and all (2, #) in the domain of f such that
[T'(g) f1(2, t) can be defined. It 1s not necessary that the convergence
conditions following (5.113) be satisfied. Moreover, if the function f has
a convergent expansion of the form

Fiig 0 =Y. A ()"

then £,,(z) must be a solution of the hypergeometric equation

s

[z(] — 2) % +[—2u — z(m — ¢ — 2u + 1)] d;i —(u —m)(g + u)] holg)=0
Hence, 1f 2u 1s not an integer, 4,(2) 1s a linear combination of the
linearly 1independent solutions F(m — u, —u — ¢; —2u; =) and
A E(m +u+ 1, u—q-+1;2 + 2u; z). If h,(z) is regular at 2 = 0
it 1s a multiple of the first of these solutions.

As an application of these remarks we apply the operator T'(g) to
the basis function f, (2, ) = F(m — u, —u — g; —2u; 2) ™ and cons-



5-15. WEISNER’S METHOD FOR TYPE A OPERATORS 211

ider the resulting expression in the domain where = = #~! £ 0 ranges
over a neighborhood of zero:

qutmpu—m ([ s (1 bﬂ}"')”’”’ (l 5. ET(EE— 1))':"'“‘ (1 1 {;I_T)—G'-'.-m

ab
2T =
o [’” =t = = o — er(z — Dja)(1 + (I + ac)f,fabj] 3
-— Z b g, &)—win (5.128)
N
valid for
ol <min (2| s | | 2| | e )
I +bel’ |l efz—1) c (1 4 be)e(z — 1)

if ¢ # 0. The expansion on the right-hand side of this expression
follows because the left-hand side is equal to = times a function of 7
analytic at = = 0. Since | 7| << | ab/(1 + bc)| the group element g is
bounded away from e and we cannot use the representation theory of
SL(2) to obtain the expansion coefficients 4, ,. However, these
coefficients can be obtained directly. The left-hand side of (5.128) is
regular at 2 = (, which implies

hyn(g, 2) = B (OF(—n, —u — q; —2u; 2), n=10, 1,2 .

Setting 2 = 0 in (5.128) and comparing the resulting expansion with
the generating function (5.124) for Jacobi polynomials, we have

R(g) = awtm—rbu=menF(—n, m — u; —2u; — (b)) (2“).

n

There are two interesting consequences of this computation: If
ﬂ:b:l,{?z{]‘thﬂﬂ

e = (")

[

and

v )

(1 4 1) =F (p,p;v; g T: ) —= Z (—'LL) F(—n, p; v; 2)7",

T bt L

7| < min(l, |1 — z|™),
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where uy=m —u,p= —u—qv=—2uFora=c=1,060= —w?
we have the symmetric relation
(1 + (1 — @) (1 + (1 — ) o(1 + o

— 2T

e [Pﬂ Raks (14(1 —2)7)(1 + (1 — Eﬂ}'r]]

e Z (24”*) F{ — N, 4y Y W)F{ —1, Py V3 ::.,":]'r‘“'j
n=>0 %
7| <min(l, |1 —2 [ |1 —w| | 1—2 1|1 —w|D)

This is a bilinear generating function for the Jacob:i polynomials.
As another example consider a solution f(x, ) of the simultaneous

equations
Crof = uw(u + 1)/, I = -,
which 1s regular at 2 = (. Thus, f satisfies the equations

' [ 1 )a—ﬂ—zt g + [—2u + =2( —}Zu—-l)]f——
W Pl —=ts — S e 1 o

(g + )t — ule + 9)] (5, 8) =0,

(1) ¢ [z% - tg-t- —u]f(z, t) = —f(2,%)

Equation (ii) has the general solution f(z,t) = #* exp(¢™1) A(2¢™1)
where A is arbitrary. Substituting this expression into (1), we find 2(x)
satisfies the confluent hypergeometric equation

d*h dh
x =5+ (Zu—m}fﬂ—l—(q—ku}k =)

(A.11). Since f is regular at 2 = 0, the solution is (unique to within a
multiplicative constant)

f(z,t) = t¥exp(t?) (g + u; 2u; zt71).

Note that 7%f(z, t) has a power series expansion in 7 = ' about
= 0. Similarly [T'(g)f](z, ") is a solution of the equation
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C1o[T'(g)f] = u(u + 1)[T'(g) f] and has an expansion in r whose

coeflicients are multiples of Jacobi polynomials:

[T'()f1(=, )

= (a8 — oz — 1)r)**(a +- er) o exp [

ab += (1 -} bE}T}
a(a - c7)

* ['? +u; 2u; (a — ¢(z "z;)"')(” T ET)]

= Y ju-nl@F(—n, —u — g; —2u; 2)r—wtn,

=0

1 <min (2] s

We can compute the coefficients j,_,(g) by settin g 2 = 0 and comparing
the resulting expression with the generating function (5.101) for the
generalized Laguerre polynomials:

Ju-ng) = ael*(—cla)"Li-+-(1 /ac).

For the special case b = ¢ =0, a = I, this result simplifies to
jua—:n(e) = (?i !}_1, whence

ey (—p; —viar) = ) %F( — 8, pes ) p,ve . (5.130)

=i}

If a =c= w12 b=, we obtain

(1 & = D)1 + 7y exp [7] oFy [ s —s T—G=10F )

= Y, (—0)"LY"Nw)F(—n, u; v; 2),
n=(0
| 7| < min(l, | 2 — 1)-).

Finally, we can make sense of (5.129) even as @« — 0 if we assume

¢c=—b—1,(1 + be)Ja = d—0:

i1 — z)rtuet F, (q - u; 2u; 0 g_f z)’ S

This function has an expansion in terms of (=" n = 0, which leads to

oo

) —5 ;F(y oy g v 2),

fi=I()

=1
|l — =

(1 — =) set By (—ps —v;

z # 1. (5.131)
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The above expression can also be easily obtained from (5.130) and the
transformation formula

5 / pri f
Flp, i v3 2) = (1 — 2)4F (v — p, 5 v — 1)’ (A. 8).

Viewed another way, (5.130) and (5.131) constitute a proof of this
transformation formula. Group theoretic methods can be used to derive
many more such identities which are equivalent, by means of a trans-
formation formula (A.8), to identities already given, but this will not be
carried out here.

516 The Group SU(2)

At this point we begin a study of the representation theory of real
3-parameter Lie groups whose Lie algebras are real forms of si(2).
Our treatment will be brief since the representation theory of these
groups 1s well known and since many of the results for special functions
obtained from such a study are special cases of results derived earlier
in this chapter.

SU(2) 1s the group of all 2 x 2 unitary unimodular matrices, i.e.,
the group of all matrices of the form

_ (e b 2 2 __
A—(_E ﬂ) a2+ b2 =1. (5.132)
where @, b€ ¢ and a is the complex conjugate of @ (Hamermesh [1],
Chapter 9). The identity element of SU(2) is the 2 X 2 identity matrix
and the inverse of a group element is its conjugate transpose:

(5 f::')_]:(g _j) if |al2+[b2=1.

Clearly SU(2) is a real 3-parameter Lie group; furthermore, it is a
subgroup of SL(2). The Lie algebra su(2) of SU(2) can be identified
with the space of all 2 X 2 complex skew-Hermitian matrices of trace
zero. In particular, as a basis for su(2) we can choose the elements

— 38 1

0 :-:'_fz)‘ 0 1.*’2), == 5;2) (5.133)

flz(z‘;z 0 fﬂz(—uz 0

with commutation relations

(A Al =Fy A A=K (L Fl=5, (5134
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where [a, B] = o — Ba for «, B € su(2). Comparing these commutation
relations with expressions (2.6), Chapter 2, we see that su(2) is isomor-
phic to the Lie algebra L(O;) of the 3 x 3 rotation group. The isomor-
phism of su(2) and L(O,) can be extended to a local isomorphism of the
corresponding groups. In fact SU(2) is the simply connected covering
group of O, and there is a group homomorphism R of SU(2) onto O,
such that

A (Z xjg:r‘) A1 — i(ﬂ(ﬂ)xw (5.135)

=1

where x = (¥, 4, , &) is a column vector, 4 € SU(2),

e T R R L P

are the Pauli matrices, and R(A4) e O, (see Gel'fand et al. [1]). This
equation defines the 3 X 3 matrix R(A4) uniquely. Here R(A) = R(—A)
so the homomorphism is not an isomorphism.

The 2 X 2 matrices ¢+, #-, #? defined in terms of the matrices
(5.133) by

FE=Fh +ikh, F=ij

satisfy the commutation relations

[A5. 5% =% [ 0] =2F

and generate a complex Lie algebra isomorphic to si(2). Thus, the
complexification of su(2) is isomorphic to s/(2) and su(2) is a real form
of sl(2).

It follows from this relationship between the two Lie algebras that the
abstract irreducible representations D(u, m,), 1,, l,, D(2u), of si(2)
induce irreducible representations of su(2). We shall determine which
of these induced representations of su(2) can be extended to a unitary
irreducible representation of SU(2). To proceed with this determination
we follow the technique initiated in Section 3-6. Consider a unitary
irreducible representation U of SU(2) on a Hilbert space 5 and define
the infinitesimal operators J,, J,, J; by

M:%U(exp:ﬁﬂf . R=1,2,3, (5.136)

t=0
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for all fe &. (2 1s a dense subspace of 3# which satisfies the properties
(3.45), (3.46).) By definition, on the domain 2 these operators satisfy
the commutation relations

[]1:]2]=Jﬂr [J&:-J]_]:IE1 []2:]3]:]1'

Hence, the operators J* J? defined by J== F]J,+i],, ]? = i];
satisfy the relations

%= U5 IRl =2F

and determine a representation p of the complex Lie algebra s/(2) on 2.

To begin with, we shall investigate which of the finite-dimensional
representations D(2u), 2u a nonnegative integer, can be obtained in this
manner from a unitary representation U of SU(2). That is, we shall
determine the conditions under which p can be identified with D(2u).
In this case 3¢ is finite-dimensional so & = 3. From Lemma 3.1 we
require

<]i’:f! ‘;1> —= _<f!r ]kh>b k — I:1293:!-

for all f, A € 5#, where { -, > 1s the inner product on 3¢, In terms of the
operators J=, J3 these conditions can be expressed as

Bhm =<fTPr, Ik =<fI]h. (5.137)

The (2u + 1)-dimensional representation D(2u) is determined by the
conditions

Pom =mpy,  JPm = [(# —m)(u +m + D'y,

5.138
Jpm = [( +-m)(u —m + D}y, i

where m ranges over the spectrum S = {—u, —u + 1,..., +u} on the
left-hand sides of these equations. (For convenience the basis vectors p,,
have been normalized in accordance with (5.41) rather than (2.27).) As
usual we apply conditions (5.137) to the operators J*, J5. Thus,

m<Pm sPn) = <]3pm v Pu) = <Pm y 1Py = H<ﬁm¢f’ﬂ>1

or (m — n){py s Pny = 0 for all m, ne S. This implies {p,,, p,> = 0

for m = n. The relation

[(# —m 4 1)+ m) 2P s Py = T Pt s Py = Pt s J Py
= [(u —m + 1) + m)|V*% Py » Pr_r)
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implies | p,, | = | p, | for all m, n € S. Without loss of generality we can
assume that the basis vectors are of length 1. Thus, conditions (5.137)
merely require that the vectors p,, form an orthonormal basis for 3 and
in no way restrict the value of the nonnegative integer 2u.

Conversely, we will show that every finite-dimensional representation
(3.138) induces an irreducible unitary representation U of SU(2). First,
every element A of SU(2) can be written in the form

A = (exp ¢y F5)(exp 0 7)) (exp @,.7,)

(E—'E‘?’*n“2 0 )(cns{ﬂﬁ) 1 sin(0)2)) et/ ()
0 et #/2/\7sin(6)2) cus(ﬁ,ﬁZ))( 0 e+f¢’21“2)

_ [eHertesd 2 cog(6/2) tetley—wy) /2 sin[EfZ})
= (I.E"'“'Fl_‘i“'a}l"f‘ sin(6/2) ettlertes) /2 cos(0/2))

(5.139)
In fact, if A € SU(2) is given by (5.132) the parameters ¢, , 8, @, can be
defined uniquely by

cos(f/2) = | a|, sin(0/2) = | b |, 0 <0 <,
and

_‘Fl‘;‘iﬂz:argﬂi {;}E;%—l—;:&fgﬁ,

whenever ab = 0. If ab = 0, an infinite number of values of ¢, , @, will
satisty (5.139). Expression (5.139) shows that the elements of SU(2) are
completely determined by the elements #, , %, , £, of su(2); hence, that
the operators U(4), A € SU(2) are determined by the infinitesimal
operators J;, J5, J5, Eq. (5.136). Thus, the irreducible representation
(5.138) of su (2) uniquely determines the unitary representation U of SU(2)
from which it 1s derived.

The actual construction of the unitary irreducible representations of
SU(2) is easy; we merely restrict the representations D(2u) of SL(2) to
SU(2). For every nonnegative integer 2u, denote by 2, the Hilbert
space consisting of all complex linear combinations of the basis vectors
Pu(®) = (—2)"[(u +m)! (v —m) 2 me S = {—u, —u-+1,..., +u},
with inner product determined by {p,,,p,> = 8,,,., m,ne S. The
elements of %, are polynomials of order <2u in the complex variable z.
We construct a representation D, of SU(2) on 5, in terms of linear
operators U¥( A):

[UHA)f)(e) = (bz + aef ()

bz + a

(5.140)



218 5. LIE THEORY AND HYPERGEOMETRIC FUNCTIONS

for all fe X, . For 4 € SU(2), (5.132), the operator D(g) given by (5.34)
1s formally identical with U%(4). Thus we immediately obtain the relation

UHA4)U"(4,) = U4, 4,),  A4,, 4,€ SU(2),

which proves D, s a representation of SU(2). The infinitesimal operators
of this representation corresponding to the elements _#,, #,, #. of
su(2) are given by

o, i d peaa
h =Rt = o
]— li_lgﬂi
; HE_ZJ:‘:.' o B R

Applying these operators to the basis vectors p, (), m € S, we find

<]kfi h>__ '_<f! J.ﬁ:k>! k= I=2:3:

for all f,he X, . Thus, {(exp8],)f, &) = {f, (exp —8],) k> where
exp 0], = 312, 0(J )"/ . (Since #,, is finite-dimensional the operators J,.
are bounded and there are no convergence difficulties.) This proves that
the operators exp 0],., k = 1, 2, 3, on X, are unitary. Moreover, we
have

U(A4) = exp(gy],) exp(0],) exp(g,]s)

where 4 € SU(2) is given by (5.139). Hence, the operator U¥A4) is
unitary.

Theorem 5.3 D, is a unitary representation of SU(2) for all
nonnegative integers 2u.
To compute the matrix elements

Up(A) = {pn, U A)pny, n,meS, AecSUQ2)

apply U%(A4) to the basis vector p,, :

Uu{ﬁ)pm = Z Uf?m{“‘q]pﬂ .

Thus,
_ 1\u+m (bz i E}E_m{ag == EJH+ﬂr = & i = g}ﬂ-‘!‘ﬂ
e i @ —m) i 2; ek e e — s (5141
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From this formula it is easy to derive the symmetrical expression

(_2:‘_}"'[{&2 + d) + w(az — E)]Eﬂ ¥ i P(®0) Unn(A)P,(2).

m,n=—u

If this last expression is multiplied by s** and summed over all nonnega-
tive integers 2u one obtains the generating function

0(4; s, w, 2) = exp s[(bz + @) + w(az — b)]

= V) Z (@)UY (A)p,(2). (5.142)

2u=0 m, n=—y

Explicitly, the matrix elements are given by

®° P {H —l_m]] {u == H)l Llrz U1 'u—m-m—ﬂ
UnmlA) = [(u +n)! (# — m'}!:[ GHOEID
1
Tl

—mn;m—u;m—n+ 1; —| bla|?)

| —— I41/2
- ren (G tapmon, (510

where P;"(x) = e~rlm+n 2187 (x | 40), and the coordinates ¢, , 6, ¢,
for A are defined by (5.139). The addition theorem for the matrix

elements 1s

U (4,4,) = Y, UL(A)U%(A), nym= —th,u.

nwnt
j=—u

We shall not work out the implications of this identity for special
functions since all of the results are merely special cases of Egs. (5.39).
The fact that D, 1s unitary does lead to additional information, however.
Indeed,

UpnlA™) = UR,(4),
which implies
~ (u+n)! (u — m)!

(—1)y""P-*™(cos ) = o — )l (4 =) P-""(cos ).

Furthermore, | U%,(4)| < 1, or

(u + n)! (u — m)l]uz.

Bt s
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The Haar measure on SU(2), suitably normalized, is given by
dA = (1/167*) sin 6 dp, df dp, where ¢, , 6, ¢, , range over the values
O0<b<m 0<o¢ <4m 0<p, <27 (Gel’fand et al [1]). The
matrix elements U7, (A4) satisfy orthogonality relations with respect to
this measure. To compute these relations we evaluate the integral

1
1672

g7 o
| j | 0¥, @, 7,)0(4; 5, w, 2) sin 0 dg, db dp,
1] 0*0

"

= T Y Y e @pEne) | THAUs4)dd

2u,2v=0 g, r=—4 m,n=—u

where the function Q( - ) is defined by (5.142). The integral on the
left-hand side of this equation can be evaluated explicitly by power
series expansion with the result

fQ(A;f’, w', Z,)0(4; 5, w, 2) dA = (F(2; 58'(22" + 1)(ww + 1)).

Thus, we obtain the relations

Sq',nar.m aﬂ.u
u41 (5.144)

U? (A)U" (4)dA =

In terms of the functions P}"™(cos 6) the orthogonality relations are

2 5 (. —n)! (u — m)!
2u +1 “"(u+n) (w+m)!"

| Prm(cos 0)Prm(cos ) sin 6 df —
0

NOTE Since SU(2) is a compact group, these orthogonality relations
could also have been derived from the Peter—-Weyl theorem (Pontrjagin
[1], Chapter 4). Moreover, the Peter-Weyl theorem can be used to
show that the matrix elements Ur (A} nym= —u, —u -+ 1,..., u;
2u =0, 1, 2,...; form an orthogonal basis for the Hilbert space of all
complex functions on the group manifold SU(2), square integrable
with respect to the Haar measure dA.

The irreducibility of the representation D, can be demonstrated
exactly as in the proof of Lemma 3.2.

Lemma 5.8 D, is irreducible.

The procedure for reducing the tensor product representation
D, @ D, of SU(2) into a direct sum of irreducible representations is
almost word-for-word the same as the procedure carried out for repres-
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entations of SL(2) in Section 5-5. This follows from the fact that the
restriction of the representation D(2u) of SL(2) to SU(2) is the irreducible
representation D, . In particular we obtain

amin(u,»)

D, ® D, Y @Dyips k an integer.
k=0

112

The Clebsch—Gordan coefficients C( - ) for this decomposition are given
by (5.57) and (5.58). Thus, we find

WU+0
Ur(A)Us (A) = z Clo,r;u,n|lr -+ n)

= |u—tl|

Clo, s;u,m | L, s + m) A),

l
Uf+ﬂ . a+m(

which 1s a special case of (5.59).

So far we have examined only those unitary irreducible representations
of SU(2) which are induced by the representations D (2u) of si(2). We
still have to consider the possibility of unitary representations of SU(2)
induced by the infinite-dimensional representations 1,, |, , D(x, m,)
of 5/(2). However, as the reader can verify for himself, none of these
infinite-dimensional representations induces a unitary representation
of SU(2). In fact, since SU(2) is a compact group, it follows from
the Peter-Weyl theorem (Naimark [1], chapter 6) that all of its unitary
irreducible representations are finite-dimensional. Furthermore, it can
easily be shown that the representations D, , 2u a nonnegative integer,
which we have constructed here are the only irreducible unitary
representations of SU(2). For proofs of these remarks and a more
detailed study of the representation theory of SU(2) the reader should
consult the standard texts (Gelfand ef al. [1], Hamermesh [1]).

517 The Group G,

G5 1s the real 3-parameter matrix group with elements

e=( 2, abel |ap—|bp=1

(The condition | @ |? — | 5|2 = 1 means g has determinant +1.) These
matrices do indeed form a group as is clear from the relation

(@ byya, by aja, + bby,  ayb, + bia,
152 = (El .:fl) (EE ﬁg) = (E_}laz L ab, b, + 5152)'
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Since the elements of G, are unimodular matrices it follows that G, is a
subgroup of SL(2). As real coordinates for G, in a neighborhood of the
identity element e we can choose (x,, V;, ¥,) Wwhere a = 1 + x; + ix,,
b=y, +1y,, 4, = —1 + (1 + 93 + y2 — x5)Y/2. Using the standard
procedure for the computation of the Lie algebra of a local Lie group,
we find L(G;) can be identified with the Lie algebra of matrices

1x 17
(}, - : _I-xz); x, y, & real.
Clearly, the elements

0 1;’2)1

jﬁ(ﬂ;z %2)’ fﬂ‘:(l,fz 0
—1/2 {})

Iy = ( 0 +12

(5.145)

with commutation relations

(A, Pl = = [Fa Al = F  [Fa Fol = —F1, (5.146)

form a basis for L(G,). The exponential map from L(G;) to G4 has the
properties

_{ cosh §/2 ¢ sinh 6/2
exp s = (—z' sinh 6/2  cosh 62 )

_ {cosh /2 sinh 6/2
Spds = (sinh )2  cosh Hfz)‘

o—10/2 0
expl f, = ( 0 eﬂ”ﬁ)’ f real.

(5.147)

To give an explicit relation between L(G;) and sl(2) we define 2 X 2

matrices Ft, -, #by FEr=—F, 11 2, #3=1F,. As iseasily

seen, these matrices satisfy the commutation relations
[ 271 =27%,  [F5.28] = 75

hence, they generate a complex Lie algebra isomorphic to sl(2). This
shows that I(G,) is a real form of the complex Lie algebra s/(2).

The irreducible unitary representations of G; were first constructed
by Bargmann [1], and this group has been the subject of numerous
investigations ever since (Gel’fand et al. [2], Pukanszky [1], Vilenkin [3]).
Here, we shall give a brief treatment of the representation theory of G,



5-17. THE GROUP G, 223

to show the relationship between this theory and the identities for
hypergeometric functions derived earlier in Chapter 5. The technique
to be used should be familiar to the reader by now: Since L(G,) is a real
form of s/(2), the abstract irreducible representations  D(u, m,),
Tu» buy D(2u) of sl(2) induce irreducible representations of L(G;). We
shall determine which of these irreducible representations can be
extended to an irreducible unitary representation of (73 on a Hilbert
space. It will turn out that all of the irreducible unitary representations
of G5 can be obtained in this way.

Following the procedure introduced in Section 3-6, we consider a
unitary irreducible representation U of G, on a Hilbert space ¢ and
define the infinitesimal operators J,. by

Jof = S UEep th)f] 0, k=1,23, (5.148)

for all fe 2. The Z is a dense subspace of # satisfying properties
(3.45), (3.46). On Z we have

[Jl ¥ JE] — _IE= [JE ) Il:t E— JE! []3 ’ ]2] == _'11 »

so the operators J* = —J, | 1]y, J* = i]; satisfy the relations
L1 =28, [BJ#]=4]J

and, thus, determine a representation p of s/(2) on 2.

We shall first investigate under what conditions p could be isomorphic
to the representation D(u, m,) on some dense subspace 2’ of . Recall
that « and m, are complex numbers such that M, + u are not integers,
and 0 << Re m, << 1. There is a basis {fnphmeS ={m, +n: n an
integer}, for the representation space of D(x, m,) with the properties

me 5= mfm ’ ]_fm & {m = “}fmﬂ » I-fm = _{m + u)fm—l :
Crofo = (JF]-+ PR — B)f = u(u + 1) £,

Thus, if p is isomorphic to D(u, m,) on 2’ we can assume {f,n} 18 a basis
for the space 2’. (Since D(u, m,)) ~ D(—u — 1, m,), without loss
of generality we assume either Im« > 0 or Im u — 0, Reu = —1.)

From (5.147), exp 4w %, = e. Thus we must have U(exp 4n 7,) =
exp 4nJ; = I, where I is the identity operator on 3. However, from
the definition of the representation D(x, m,) it follows that (exp 47 ],) f,, =
e~trinf for all m € S. This is possible only if 27 is an integer. Therefore,
if D(u, m,) is induced by the representation U of G, then either m, = 0
or m, = 1.
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According to Lemma 3.1 the unitarity of U implies the conditions
<jkf! h> == _'_<f1 th>r R = 1121 3:-

for all f, h e @ where (-, ) 1s the inner product on . In terms of the
operators J*, J?, the conditions become

<13f1 h> = <f: Jﬂh>: <]+f1 k> e '_<f: ]_h:"*
From the first of these relations we find

m<fm 1fn> =x <]3fm :_ﬁu> =i <fm ’ ]-E,fﬂ> = ”(fm 1ﬁ3,>

for all m,ne S. Thus {f,,., fn> =0 unless m = n. The second relation
implies

(?ﬂ o e ﬁ)<fm =fm> — ‘<J+fm—-1 1fm> 5 _<fm-—1 ) I_fm>
= (m _It_ u)<fm—1 1fm—l>1

or

m__l‘_ﬂ_ Ifm-l 12
| ~0 forall meS. (5.149)

If m, = 3, it follows that u = __1 -+ 4g, where ¢ > 0. Substituting this
value for 2 in the above relation we find | £y | = [ | forallm = § 4 =,
n an integer. Thus, without loss of generality we can assume | Jiz =1

If m, = 0 the situation i1s more complicated. In this case (5.149)
implies either (1) # = —1 14, ¢q>0; or (1) =g 1 <9<
Corresponding to solution (i) we have [fpa| = fu| for all
integers m, so that we can assume | f,n | = 1. However, for solution (ii)
(m — g — D] fn |2 = (m+ @l frna 2, all integers m. To get an
orthonormal basis for #, define new vectors j,, by

. [ Ng+1DIm—q) 77 3!
T [F(—q}l"{m --'.—g--%— 1}] fo, m=0,%£1, £2,.., (5150)

where we take the positive square root of the positive quantity inside the
brackets. Then | j,, | = | jm_1 | and without loss of generality it can be
assumed that | j,, | = 1 for all integers m.

At this point we have obtained the following possibilities for a repre-
sentation of s/(2) on £ induced by a unitary irreducible representation

U of G5 on H#:



5-17. THE GROUP G, 225

(I) A%7 (¢ >0). There is an orthonormal basis {fu}h meS =
{0, £1, +2,...}, for 3 such that

Jafm i mfm ’ ]+fm = (m 7o % == I'g)fm-kl 3

J_fm = —(m — $ + 1q) fn-1 » Cl,ﬂfm = —(g% + %)fm .

(II) A%« (g >0). There is an orthonormal basis ) me S =
{£3, £3, +3,...}, for 32 such that

-F:fm = mfm 3 J+fm = (m' T E"':jr).){.rl'?,-!-l )
]hfm == _{m == ;EI’: i i'g)fm—l 3 Cl.ﬂfm e _({fﬂ it i}fm .

(II) 4% (—} <¢ <0). There exists an orthonormal basis
UmphmeS = {0, +1, £2,...}, for 3# such that

(5.151)

(5.152)

Vim =M, Ijm = eul(m — q)m 4 g + D12,
(5.153)
Jim = —€pm_a[(m 4 g)m — g — DE s Ciolm = q(q + 1M s

wheree,, = L form > 0,¢, = —1 form < 0.

Conversely, in the following section it will be shown that each of the
Lie algebra representations listed above does arise from an irreducible
unitary representation of G, on .

Next we investigate under what conditions a representation T, of
${(2) could be induced on 2’ by a unitary representation of G, on .
Here, 2u is not a nonnegative integer, .§ — {—u, —u+1, —u+2,.},
and there is a basis {f,,}, m € S, for the representation space 2’ such that

Vin =tfus  Tfu=—Wfrn, JTfu=—(m+u)fn,.

Exactly as in the treatment of the representation D(u, m,) given above,
we find in order for the representation 1, of s(2) to be induced on 2’ by
U it 1s necessary that (i) 2u is a negative integer; (i1) {f,,, > = 0 for
m % n; and (iii) (m — w)(m -+ u+ 1) = | f,, 2| frs > > 0 for all
m € .S. This leads to the following possibilities:

(V) Dy (n=4,1,3%,..). There is an orthonormal basis
UnhmeS={nnt+1,n-+ 2,...}, for 3 such that

J?jm = mjm ) ]J'jm = [(m -+ ﬂ)(m — I}]”ijm+1 )
(5.154)
J_jm = "‘[{m = H}(m T 1)]”2}'”:—1 ) Cl.ﬂjm — ﬂ{ﬂ == l}jm
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for all m € .S on the left-hand sides of these equations. Here

Jm = [{z,gm__])?{; Ej Iﬂ)!]ugfﬂ“ —

Similarly, the possible representations of the form |, on 2’ induced
by unitary representations of G can be denoted by

(V) D, (mn=4,1,4%,.) There is an orthonormal basis {j,},
meS ={—n, —n—1, —n — 2,...}, for # such that

Ia.m — mjm ’ ]+.-m —= _[(m _I_ ?I:](?H = —|_ ]']]1'|r2jm+1 ’
(5.155)
Jim =[n —n)(m +n — D)]"3ny,  Ciojm =n(n — 1) jm.

Finally, as the reader can verify for himself, the only possible finite-
dimensional representation D(2u) of s/(2) on # induced by a unitary
representation of G, is the trivial 1-dimensional representation D(0).

5-18 Unitary Representations of G;

Now that we have classified all of the possible irreducible Lie algebra
representations of s/(2) induced by unitary irreducible representations
of G5, we will show, conversely, that each of these Lie algebra represen-
tations uniquely defines a unitary irreducible representation of Gy .
This will prove to be an easy task.

To begin with, it is convenient to adopt a new coordinate system for
the elements of G5 . From the 1dentity

—i J inh o/2\ re—/2
£= (}: :D - (E I::-M2 ei?fﬂ)(:i] S’f iih iiz)(ﬁ 0 eévﬁ) Eelee)

valid for
a = e Hrtv[2 gosh p/2, b — et—#)/2 ginh p/2, @, v, preal,  (5.157)

we can conclude that every g € G; can be expressed in the form

g = exp(pfy) exp(p #y) exp(v fy). (3.138)

In fact, for every a, b €  such that |a |> — | b|> = 1, it is possible to
find real numbers u, p, v satisfying (5.157). The coordinates (u, p, v) for
G, are analogous to the complex coordinates o, w, B for SL(2), Egs. (5.11).
Since G, is a subgroup of SL(2) we can readily verify: If g e G; has
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coordinates (u, p, v), i.e., if (5.158) is valid, then considered as an
element of SL(2), g has coordinates «, w, B, where o = —iu, w = p,
B = —iv

Equations (5.157) do not determine the parameters y, p, v uniquely.
Indeed we can restrict p to take values in the range 0 < p < o0 in which
case these parameters can be defined by

| @ | = cosh p, | b | = sinh p,
p = —arga — arg b, v = arg b — arg a.

As an immediate consequence of the validity of the decomposition
(3.157) for all g € G5 we have the result that an irreducible unitary
representation U of Gy is uniquely determined by the infinitesimal
operators J; and J, . Indeed, if g has coordinates (u, p, v) then

U(g) = exp(p]3) exp(p],) exp(v]y).

This result shows that the Lie algebra representations listed in Section
J-16 uniquely determine the group representations U from which they
are derived.

We now proceed to the actual computation of the unitary irreducible
representations of G; . Since Gj is a subgroup of SL(2) we will be able
to construct these representations as restrictions to G of corresponding
local multiplier representations of SL(2).

(I) 4% (¢ > 0). The Lie algebra representation 494, (5.151), of
s{(2) on Z’ is isomorphic to the representation D(—4 + ig, 0) on the
abstract vector space V. In Section 5-1 it was shown that this abstract
Lie algebra representation induced a local multiplier representation of
SL(2) defined by operators A(g) acting on the space (7, of all functions
analytic in a neighborhood of z = 1. With respect to the basis
{finh m = 0, -1, +2,..., the matrix elements AyY(g) of this multiplier
representation restricted to Gy are given by the equivalent expressions

Oy o | @ | ARl KR
Ay'(g) = 't +4q + 1)
FG—ig—L3—dg+hkk—141;|blal)
Tk —1+10)

p—ilultvk) I'(} +iqg + k)
TG +ig + 1)

I'(z +1q + k)

E:i‘fﬂr(cﬂsh P)i
[, k integers, (5.159)

where ¢ = exp(u %) exp(p Z,) exp(v_£,). Since |a |2 = 1 -+ | b |? these
matrix elements are defined for all g € G, , not just in a neighborhood of
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the identity element. The addition theorem, (5.8), for the matrix
elements becomes (on restriction to G,)

A% &18:) = Z A'g;”(gl)ﬂgf(gz), £1,8:€06;. (3.160)

j=—uo

In particular, the addition theorem is valid over the entire group manifold
G, , not just in a neighborhood of the identity. (This last remark follows

from the facts: | bja | << 1 for all g € G, , and m, = 0.)
From expressions (5.159) and the transformation formulas (A.8), it

is easy to verify the equality
AX(g) = A‘“r“(g—l] k, | integers, geG,. (5.161)

This equality implies that the infinite matrix [A}%(g)], —oo </,
k << c0, is unitary for all g € G, . Thus, we have constructed a represen-

tation nf G, by unitary matrices.
We can shed more light on the unitary property of the matrix

elements by returning to Egs. (5.151) which define the representation
D(—1 4 i¢, 0) of s/(2) on the pre-Hilbert space &°'. The operators
J=, J? given there satisfy the relations

i =——<LTB, Tl =P

for all f, he @', where ¢+, ) is the inner product on 5. From the first
of these relations we can obtain the identity

Ayexp b g+) = Aylexp —b f), beCl, (5.162)

where the matrix elements A,(g) of D(—% + 7g, 0) are defined by
(5.9). Indeed, if / = k&, then

Ayfexp b g+) = <f1, (blT);; f,;,> <( =] g;lhﬁ ,f:ﬁ>

<fa ; ~0) ge;,h fz> = Ay(exp —b77),

where f, , f; are elements of the orthonormal basis {f,,} for . If k£ > I,
both sides of (5.162) are zero. Similarly, the relation involving J* implies

the identity

Ay(exp o #3) = Ay(exp @ f3), a«el.
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If
a b
g= (0 JesLe
is in a sufficiently small neighborhood of the 1dentity element then
g = exp(—[c/a]f~) exp(—ab #*) exp(a £?)

where e*/? = a. Thus,

Aylg) = i Ay(exp —[c/a] # ")A;(exp —ab ¢ ) A(exp o #3)

j.ﬂ:\—m

= Apl(exp &7%)(exp @b #~)(exp[c/a] F1)] = Au(3),

where

We have derived the identity

Ay(g) = Au(8),  k, lintegers, ge SL(2), (5.163)

only for g in a sufficiently small neighborhood of the identity element.
However, by analytic continuation its validity can be established for all
g € SL(2) such that both sides of the equation are defined. In particular,
if g€ Gy we find § = g€ G, and (5.163) reduces to the unitarity
relation (5.161).

Our results can be phrased in terms of unitary operators on the Hilbert
space . The vectors {f,.}, m = 0, -1, +-2...., form an orthonormal
basis for 5, and the elements of 3# are vectors I =5 oo Bilich
that Y8 |6 P< 0. Iff= Se. f  h— >'d,.[,. are elements of 2.
the inner product (f, %) is given by <fe> = 3% éd. . The
operators U(g), g € G;, defined on # by

a0

U = 2 A@fi, k=0,+1,+2,.,

[=—cn

are obviously unitary and satisfy the representation property

U(g:18) = U(£:1)U(g,), £1,8:€G;.
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These operators thus define a unitary representation A°%? of G;.
Furthermore, by proceeding exactly as in the proof of Lemma 3.2, we
can show that A%< is irreducible. (Recall that the proof depends on the
fact that none of the matrix elements A} g) is identically zero.)

The realization of the representation 4°“ given here 1s purely abstract.
However, it is not difficult to construct concrete function space realiza-
tions. For example 4%¢ can be defined on the Hilbert space Ly(p) of
functions f(e'¥) square integrable on the unit circle. The inner product
is given by

> = @yt [T dgi S, heLyp)

The functions f,,(¢) = e, m = 0, -1, +2,..., form an orthonormal
basis for Ly(¢). With every g € G; we associate the operator U(g):

[U(g)f1(eie) = | @+ bete [-1s2f (5250) feLy(g)

be'? - a4

(These operators can be obtained formally from (5.4) by setting
¥ =% m, = 0,u = —} + ig.) Since |(ae’® - b)/(be'® + a)| = 1, U(g)
is well defined. The reader can verify for himself that the operators U(g)
define a unitary representation of G5 on L,(p) with matrix elements

<J1» Ulg)fx) = A% (g),

where A%(g) is given by (5.159). For more details see Bargmann [1].

It is not worthwhile to work out identities for the matrix elements
A%%(g) implied by the addition theorem (5.160) since these identities are
merely special cases of (5.110). Similarly, the differential relations
obeyed by the matrix elements are special cases of the results of Section
5-7. However, the fact that the matrices [A4};%(g)] are unitary does give
us one bit of new information: The matrix elements satisfy the inequality

| Ay'(g)l < 1or

I'(3 419 + &)
't +ig +10)
l, kR integers, ¢ >0, p

B3 w(cosh p) | < 1,
= 0.

(II) A'2e (g > 0). From (5.152) it follows that the Lie algebra
representation A1/2% of s/(2) on %' 1s associated with the abstract
representation D(—1 + ig, 1). As in (I) above, this abstract Lie algebra
representation induces a local multiplier representation of SL(2) defined
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by operators A(g) acting on ¢Z, , Eq. (5.4). The matrix elements A 29 g)
of the multiplier representation, where g is restricted to G; , are given by

ey Dlig + &+ 1)
1/2.4 = 28g 51 5~1—kpk—1
A2 g) = | a |Hgla-1-45 T TT0)

H(—1g — 1L, —ig + k4 1;k — 1+ 1; | bla |2)
I'k—1+1)

: o dg+k—4+1)_,
— p—i[pli43)4+ulk+ )] ! $—1. 44k
G I'(ig + 1+ 1) B_iiig (cosh p),

[, k integers, (5.164)

where g = exp(u %) exp(p.%,) exp(v%). These matrix elements are
defined for all g € G; , rather than just in a neighborhood of the identity.

The addition theorem for the matrix elements, Eq. (5.8), becomes

A%;:E’q{&gz) == Z Aﬂz’q{gﬂ—’q}f'q@z}r (5.165)
valid for all g,,2,€G;.
From (5.164) and the transformation formulas (A.8) we can readily
verify the equality

Ay=ug) = APYg™),  k, lintegers, geG,, (5.166)

which proves that the infinite matrices [4}/*%(g)] are unitary. Moreover,
just as in the proof of the identity (5.163) we can show that the matrix
elements A;(g) of the representation D(—1 + ig, 1) of s/(2) obey the
relation

Ay(g) = A 8). (5.167)

For g € G, this relation reduces to (5.166). To construct the unitary
representation A'/%4 using these matrices we consider a Hilbert space
S with orthonormal basis {f,,}, m = +1, 48, L3 ... Then the opera-
tors U(g), g € G;, defined on 3 by

U(g) frireer = z Aﬂz'u{ﬂ}flfzﬂ ) k=041, 42...,

f=—co

form a unitary irreducible representation of G, .
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The representation A/2 of G, can also be given a concrete realization
in terms of unitary operators on the Hilbert space L,(¢). This time we
label the orthonormal basis vectors for Ly(¢) as f,,,.(¢) = €*#. Corre-
sponding to each g € G; we associate the operator U'(g):

ae'® | 5)

(U'(@)f(e") = | @ + be (@ + beiw)If (7o), feLa(y)

(This operator can be obtained formally from (5.4) by setting
z = e% m, = 3, u = —% + ig.) The operators U’(g) define a unitary
representation of G on Ly(g) with matrix elements

Fawts U0 Frs = Au22),

where A};*%g) is given by (5.164). For the details of the construction
see Bargmann [1].

The addition theorem for the matrix elements is again a special case
of (5.110), while the recursion relations obeyed by the matrix elements
are obtained from Section 5-7. The unitarity condition(5.166) implies
| 432(g)] < 1 or

L(ig +k +1)

o = k int
ER BELaT " (coshp) | =1, [, k integers, g > 0,

(III)  A°¢ (—% < g < 0). The Lie algebra representation A%4,
(5.153), of sl(2) on &’ is isomorphic to the abstract representation D(g, 0)
on the vector space V. With respect to the basis {f,,}, m = 0, £+1, 4-2,...,
the matrix elements of D(gq, 0), restricted to G, , are given by

4oy L@ P BTG R+ DF(—g — 1 —g + kk— 1+ 1; | ba )
w(8) = T(g+1+1) Ik —I+1)

Mg+ k+1)
I'g+1+1)

— p—tultvk)

B, "*(cosh p),  k, ! integers,

With respect to the basis {j,,}, m = 0, &1, £2,..., where

. [ (g4 DI(m — q) 1'/*
Jm = \T(—q)T(m + q + 1)} Jm s
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see (5.150), the matrix elements of D(g, 0) can be expressed in the
equivalent forms

oar o« [L(kR—q@)I(l+ g+ /2
Aii-(g) = I'(k 4+ q + 1)l — q) Ayp(g)

—

| g [pagig-ige—r [T+ g+ 1) Tk —Q)]””’(k+q+1)
k+q+D) I(I—g)l Il+g¢+T)

F(—q—1, —q+hkh—1+1;]|blal?
'k —1+1)

ttsg TR+ a4+ 1) [0 + g+ VIR — Q12 1
g—ilpl+uk) (f TR I} [F{kﬁ‘? oL I)P{E_ Q’)] EBQ (Cﬂsh f;jlﬁg)

where g = exp(p ;) exp(p.f,) exp(v %) € G; 1s given by (5.156). The

addition theorem (5.8) becomes

AN(g18s) = Z 1 (£1)A4%%(&5), (5.169)

J=—t0

valid for all g, , g, € G;. From the expressions (5.168) for the matrix
elements it 1s easy to verify the identity

Ava(g) = A%(g™), (5.170)

which proves that the matrices [4};%(g)] are unitary. Moreover, if we
mimic the derivation of the i1dentity (5.163), case (I), we can derive the
relation

U=tk + 9+ 1) 77—

for the matrix elements of D(q, 0), where g € SL(2). When g € G, this
relation reduces to (5.170).

Let 5# be a Hilbert space with orthonormal basis {j,.}, m = 0, -1,
+2,... . It 1s easy to show that the operators U(g),

U@ = Y A%(g)j,, kaninteger, geG,, —} <gq <0,

=—co

define a unitary irreducible representation of G, on 3.
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The problem of constructing a concrete function space realization
of the representation A%¢ for —1 << ¢ << 0 1s somewhat more difficult
than the previous cases and will not be treated here. See Bargmann [1]
for details of the construction.

Again the addition theorem and recursion relations for the matrix
elements are special cases of equations (5.110), so it 1s pointless to
re-derive them. The unitarity condition (5.170) implies

HF{kJqur (kR — q)
I'(l + ¢+ DI'(l — q)

IV) D; (n=3,1,34,.). According to Egs. (5.154) the Lie
algebra representation D)} of s/(2) on &’ is 1somorphic to the represen-
tation T_, on the abstract vector space V. This abstract representation
of s/(2) induces a local multiplier representation of SL(2) defined by the
operators B(g) acting on the space (7; of all functions f(2) analytic in a
neighborhood of 2 = 0, (5.18). With respect to the basis {f, ..},
k=0, 1, 2,..., the matrix elements restricted to G; take the form

1/2 1
] B, *(cosh p) | < 1, —1 <g< 0,

MF(-Lontkk—l+1|bal) .,

— alg—2n—khk—1
Bm{g:}—ﬂﬂ b Il F{k—f—'—l} Rt

(see Eq. (5.23)). However, in terms of the orthonormal basis {j,,} for 2,

[{erm_ 1}?{; 1_} !u)!rﬁf’” *

m=nn—+1,n4+2,...,

jm:

the matrix elements of B(g) are

< (27 - kR — 1)1 171/2
Bliﬂ(g) = _(kI {2?]' 2 !—}1}!.1 Bﬂk{g)

_ [@n+k— 1) RIy12 aigi—zn_kﬂk—zF(—f, 2n + Ry E—1+ 1;|blal?)
{(2n + 1 — 1)1 I'(k —14-1)
1 o | Bl91/2
o [E: :ﬁ ] ]1)}.1?] alsdiaan  maadi () (T A (5.171)

where g = exp(u %) exp(p %) exp(v %) € G, 1s given by (5.156). Since

2n 1s an integer, these matrix elements are well defined over the entire
group manifold G5 . The addition theorem is

Bii(818) = Z Bii(g1)Bi(gs), (5.172)

=0

valid for all g, , g, € G5 .
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The infinite matrix [B}(g)], /, # = 0, is unitary, i.e.,
B (g) = By (g7). (3.173)

This property can be verified directly from the explicit expressions
(5.171). Alternatively, one could mimic the proof of the identity (5.163)
and show that the restrictions on the operators J+, J® implied by Lemma
3.1 lead to the following relation for the matrix elements of 1_ :

Lk=0, geSLQ) (5.174)

For g € G; this identity reduces to the unitarity condition (5.173).

Using the unitary matrices [B7(g)] we can now construct the unitary
representation D, of G; on a Hilbert space 3¢ with orthonormal basis
Umpm=mn n-+1, n+ 2,... In fact the operators U(g), ge G,,
defined on 5 by

U(g}jﬂ+k . Z B (g:}}ﬂ_|1 L) 'k — U: 1! 21“'1

clearly form a unitary representation of G, . Exactly as in the proof of
Lemma 3.2, one can show that D} is irreducible.

The representation D can also be given concrete function space
realizations. We mention Bargmann’s construction. The Hilbert space
Hon,n = 3,1, 8, 2,..., 1s the space of all functions f(2) analytic on the
open unit circle .4 in the complex plane, # = {zZ < 1}, such that

iimg_l

I=8n T

f F(2) (1 — 28)2dxdy < 0, 1> 1.
A

Here = = x 4 #y and the integral is taken over .#. The limit / — 27 is

essential only for # = {; otherwise it is redundant. The inner product
{+yDan On H,, is defined by

o By = lim =1 | F@hE) — =8yt dedy,  fhedt,.
Set fo.(2) = 2% k=0,1,2,... By introducing polar coordinates

z = ré'%, it is easy to show

: Rl (2n — 1)!
TARE g S R (ZHEL = i‘}!  LE>0. (5.175)
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Therefore, f(2) = 3f.,¢:2* is an element of #,, if and only if

=kl (2n — 1)!
2 2n + k — 1)]

k=0

|ieg{® <= 0n.,

According to (5.175) the functions

; 2n +k — 1)teE

form an orthonormal basis for 5, (compare with Egs. (5.154)). On 3%,,
we define the operators U'(g) by

[U(@1(=) = bz + @y (), g€Gyy fEHo. (5176

Formally these operators are identical with the multiplier representation
(5.18), when g € G, . Expression (5.176) is well defined since

2 1 — =22

1_‘53—&; =gy for ad—B=1

Thus |(az + b)/(bz +ad)| <1 if |2| <1, and the manifold 4 is
mapped into itself, The reader can verify that the operators U’(g) define
a unitary representation of GG; which is isomorphic to D7 . With respect
to the orthonormal basis {j,.,} the matrix elements are

<jﬁ+l ) Ur(g}jn-l-fi:}Eﬂ — B?;;[g]-

For more details on this representation see Bargmann [1].

Identities for special functions implied by the addition theorem (5.172)
are special cases of (5.116). The unitarity condition on the matrix
elements yields the inequality

2n +k —DIRWY2
' [EZH + I — 1)}! f!] B " h[mEh p)| < 1,

"!ﬁk :{}111 21"-1 n :%1 11 %1-'-'

(V) D, (n=4%1,4%,..). According to (5.155) the Lie algebra
representation D, of s/(2) on &’ is isomorphic to |_,. In Section 5-3 we
showed that | _, induces a local multiplier representation of SL(2)
defined by operators C(g) acting on the space (7, of all functions f(=2)
analytic in a neighborhood of 2 = 0, (5.28). With respect to the basis
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{fonah 2 = 0,1, 2,..., the matrix elements of the operators C(g), for
g restricted to G, , are

RUF(—1, 21 + ks k — 1+ 15| bja )

— Fla—2n—kLk—1
Clk(g)_ﬂﬂ “b Il F(h—!—f- l:l J E:k.a}-"o:ﬂ
Eq. (5.31). In terms of the orthonormal basis {j, }, for 2,
- (n —m — 1) Rz il
h“_[ﬁn+iﬂ(—ﬂ—1@J Jms m=—m—n—1,..,

the matrix elements of C(g) are

g (20 + k — 1)1 M1
Cu.-,(g) _,EEI {:2?1 zH f I}I_ Clk(g}

|

(2n + R — 1)! B2 Gla-n—khk—t F(—L2n 4+ kk—1+ 1, | bla?)

@n 71— 1)L TE=TL1)
- -k — 1) klh1/2
= [T ] etmostnsmig st cosh ), (5.177)

where g = exp(i,%;) exp(p.£,) exp(v. %) € G,
Comparing these expressions with the matrix elements Bii(g) of the

representation D7, (5.171), we find

Ci(e) = By, Lk>0, geG,. (5.178)

Thus, from Egs. (5.172), (5.173) we immediately obtain the addition
theorem

C?ﬁ:(glgﬂ} == Z ij(gl}ﬂ'ﬁ,:(gg}, £1:8:€Gy,
=0

and the unitarity relation
Cﬁb(g ) = C;;.g (g _1)'

Exactly as in the treatment of the representation D}, , we can show that
the unitary matrices [Cl(g)] define a unitary irreducible representation
D, of G, .

This representation has a concrete realization on the Hilbert space
#,, described in case (IV). To construct it define operators U”(g):

[U"()1(2) = (B + a)-2of (Z10)

o ! zeM, fedt,,,
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obtained formally from the multiplier representation (5.28) by restricting
g to G5. As the reader can verify, these operators define a unitary
irreducible representation of G; on 2%,,, isomorphic to D; . With
respect to the orthonormal basis

(2n +k — ”!]”2 2k,

jonesl®) = [T k>0,

for 5,, the matrix elements of these operators are

<j—ﬂ—1 d U#(g}j—u—k:}?.ﬂ == C?E(g)

As shown by Bargmann, the above five classes together with the
trivial identity representation constitute all the irreducible unitary
representations of G5 . A study of the orthogonality and completeness
relations obeyed by the matrix elements of the unitary irreducible
representations with respect to the Haar measure on G; i1s beyond the
scope of this book. For these results see Bargmann [1]. Likewise we will
not consider the important problem of decomposing tensor products of
unitary irreducible representations of G, into irreducible representations.
The decomposition

o

D; ® Dy = ;.E D Dyint sk
=0
is a special case of our results on the representation {, & 1, in Section
5.6. However, a study of all possible tensor products of representations
in classes (I)-(V) is rather involved. Indeed there are few published
results on this problem which are explicit enough for application to
special function theory (Pukanszky [1], Romm[l]).

519 Contractions of %(1, 0)

In Section 2-5, it was shown that the Lie algebra #(0, 0) >~ 7, & (&)
was a contraction of %(1, 0) =~ sl(2) @ (&). Indeed, 7, is a contraction
of s/(2). Similarly #%(0, 1) was proved to be a contraction of %(1, 0).
These relations between Lie algebras suggest that the matrix elements of
irreducible representations of .7; and %(0, 1) may in some way be
obtainable as limits of matrix elements of irreducible representations
sl(2). This 1s the case, as will be seen from the following example.

Here we follow Wigner and Inonu [1], and derive a relation between
Jacobi polynomials and Bessel functions. According to Section 5-16,
the irreducible unitary representation D, of SU(2), 2u a nonnegative
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integer, can be realized on the (2u 4 1)-dimensional Hilbert space
consisting of all polynomials of order not greater than 2« in the complex
variable z. The inner product {.,.> on &, (conjugate linear in the first
argument, linear in the second) is uniquely determined by the require-
ment

<P§11P:> =8m,ﬂ:r _-uf‘t;-.maﬂ iu:
where

vy o
Pn(®) = )l —m

m = —u, —u -+ 1,..., +u.

Thus, the 2u + 1 vectors p), form an orthonormal basis for 2, . The
infinitesimal operators J,, k = 1, 2, 3, on X, are defined by

i R
h=—eYsn—3" &
1 d z* d
W= —=sE =5 P
.. d
]3:—111—13—[,

and obey the commutation relations

[]1 : ]2] = ]3 ) [Ja: ]1] = JE : []2 ) ]3] == ]1 . {5-180)

In terms of the basis {p};}, the matrix elements of these operators are
Usdham = < Pns JsPmd = — 1184,

B = P8 Tuph> = — 2 [ + 7 + D — )28y
— = D RS, (5181)
(Wi = <25, T2 = 5[ 1+ Dt — M0

= % [(w —n + 1)(u + n)]2 8y m

n,m= —u, —u + 1,..., +u.
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According to Eq. (3.64),

K; = —ipcos a, K, = —ip sin «, Ks = e o == 0, wgeal,

do’

are infinitesimal operators induced by the irreducible representation (p)
of E; on the Hilbert space 7. Clearly,

K, K]l =0, [K;, K ]=K,;, [K;,K]=—-K;, (5182

and the infinitesimal operators generate a Lie algebra isomorphic to
&, , a real form of 7, . With respect to the orthonormal basis £, («) = et
+n =0, 1, 2,..., for 5 the matrix elements of these operators are

(Kg)n.m = <'Ilﬂ ’ Kﬂhm>* = —1in an,m 3

(KD = <hy , K™ = — ; G L S -
(5.183)

(Kg)n,m - <hfn ) Kﬂhm>* . g (Sﬂ-i-l,m i 5:|"e.--~1,*.~3-1.):
n,m =10, 41, 42.....

The inner product {., .>* refers to the Hilbert space 5¢.
Corresponding to the parameter € > 0 we can define a new set of
generators for the Lie algebra of SU(2):

Gy =€y, Gy = €], Gy = Js. (5.184)

The structure constants for the commutation relations of the G operators
are functions of €. Indeed,

(G;, G,] = ‘EEG:; , (G, , Gl] = G,, [GE 1 Ga] = Gl )

As € — () the structure constants approach limits which are the structure
constants of a new 3-dimensional Lie algebra. In the limit the commu-
tation relations become

[G1 ’ Gz] =0, [Ga ’ Gl] — Ga:— [GE ’ Ga] = G1 ’

which defines a Lie algebra isomorphic to &;. We have rederived the
fact that &, is a contraction of su(2).

Using this relationship we can obtain the irreducible representation
(p) of &, as a limit of a sequence of representations of su(2). Consider the
representation D, of SU(2), u a nonnegative integer. The matrix elements
of the G operators corresponding to this representation can be deter-
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mined from (5.181) and (5.184). Computing the limit of these matrix
elements as e — 0 and u — - o0 in such a manner that ex — p, we find

l:ﬂ} (GME}*H m- hﬂ'l < pre E]l Pp"llE)‘ — = %} (Eﬂ+1im —|_ an—‘l.m} — (Ki')ﬂ,m ]
lim (G4 Ynm = 5 (Basrom — Bn-r.m) = (B, (5.185)
1111';1 (GEOY == () n,m=>~0, +1, +2,....

Thus, we have obtained the irreducible representation (p) as a limit of
irreducible representations of su(2). From this result it is easy to compute
the effect of the limiting process on matrix elements of the representation
D, of SU(2). For our purpose it will be sufficient to consider the matrix
elements of the unitary operator e = U%exp #_¢,). From (5.143) we
have

T

Similarly, from (3.57) it follows that the matrix elements of the unitary
operator €€, corresponding to the representation (p) of £, are given by

(€™1)p.m = """ Jum(p0)-
Thus the first of the relations (5.185) implies
lim (e%01), ,, = (%), ., Gy =]y, (5.186)

.-;..q‘_]
P

or

nem [0l + m) (ple — M2 opm o\ imon
i Gy [T el Eo(cos ) = (e

Simplifying this expression we obtain
kl-l-ﬂ (—R)""P."™(cos x[k) = Jn_m(%),
n,m=0,+1, +2,..., xreal (5.187)

This demonstration of the limit relation (5.187) is not rigorous since
the validity of (5.186) has not been explicitly veriied. However, it is
now easy to establish (5.187) directly from the power series expansions
for the functions involved.

Using similar arguments we could derive formulas expressing Bessel
functions as limits of matrix elements of irreducible representations of
G, . Also we could use the fact that %(0, 1) is a contraction of ¥(1, 0) to
obtain the associated Laguerre polynomials as limits of Jacobi poly-
nomials. Both of these constructions are left to the reader.



