CHAPTER 9

Some Generalizations

Up to this point all identities for special functions have been derived
from a study of the representation theory of the Lie algebras Y(a, b)
and J . However, the Lie theory approach to special functions is of
much wider applicability than these examples may indicate. To bolster
this contention we use the results of Chapter 8 to discover some new
Lie algebras which have realizations by generalized Lie derivatives in
one and two complex variables. Corresponding to each of the new Lie
algebras we will derive identities for special functions by relating these
functions to the representation theory of the Lie algebra.

The first five sections of this chapter are devoted to a brief examination
of the Lie algebra ¢} . A study of #, leads to new identities for the
Hermite functions, the best known of which is Mehler’s theorem,
(9.36). The special function theory of #; presented here is by no means
exhaustive, and the interested reader is invited to derive additional
results. (Weisner [2] has obtained identities for the Hermite functions
even more general than those derived here, by studying a 6-dimensional
Lie algebra which contains ¢ as a subalgebra. However, his 6-dimen-
sional algebra has no realizations by generalized Lie derivatives in one
complex variable.)

In the last half of the chapter we introduce a family of 3-dimensional
Lie algebras &, , which forms a natural generalization of .7, ~ Py g
The special functions associated with this family form a natural gener-
alization of Bessel functions, and the identities obeyed by these functions
are analogous to those derived for Bessel functions in Chapter 3.

The above examples are indicative of the use of Lie theory for the
study of special functions. This theory can be employed both to obtain
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properties of known special functions and to derive new functions which
are interesting enough to deserve the label “special.” Additional exam-
ples of the applications of Lie theory to special functions are found in
Vilenkin [2], [3], notably the special function theory of unitary represen-
tations of the orthogonal and Euclidean groups in #n-space.

9-1 The Lie Algebra 7,

A 5 1s the 5-dimensional complex Lie algebra with basis £+, #3 &, 2
and commutation relations

22, 5] = +.74, [#3,4] =22
(£ A =¢, [f~2=2¢% [F'9]=0 (9.1)
[, 6] =73 €] = [2, 6] = 0.

Clearly, the 4-dimensional subalgebra of #; generated by ¢= ¢#3 &
is isomorphic to %(0, 1). The Lie algebra %5 is of interest to us because
it has realizations by differential operators in one complex variable.
In fact, for ¢ = 2 in expression (8.28) one obtains the operators
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which define an effective realization of J; . Every transitive effective
realization of J, by gd’s in one complex variable is an element of
Ol(&y).

A5 also has realizations in two complex variables. Using Lie’s tables
(Lie [1], Vol. ITI, pp. 71-73), and the methods of Chapter 8 one can
show that every transitive effective realization of #; by gd’s in two
complex variables is an element of (Z(B,), j = 1,..., 5, where

L

o G R) A

0z,

7, ¢ 25
A e = = 1. = — [
e:( 2y = ﬂzl+2)’ r=35 =3 s=1:
Aem 8 8 8 3
BE‘ Fa E; — 3 EI 531 o S , Ei 11 ZEE 331 S
r=5: k: y 521:
8 83 @8 9 40

B, B o—
Ps 1oz ¥ Tlae.t De S aes”



300 9. SOME GENERALIZATIONS

% d 8, d
. z —z Dz = 2\,
Ba: oz, ' S & 1332 A (ﬁzl 2 dz, T 32) ’
Y= =3 L=
¢ ¢
B:: T €12, , e 7 s 1, &z
=9, E=3, §=
(9.2)

9-2 The Lie Group K;

K 18 the 5-dimensional complex Lie group with elements
g(q, a,b,c, 1), g,a,b,c,rel,
and multiplication law
glg,a,b,e,7)elqg',a,b,c, )
= g(q +¢¥q,a+a +ech, b+ b’ + 2e¥cq’,c + ¢, 7 + 1) (9.3)

In particular the i1dentity element of K is g(0, 0,0, 0,0) and the
inverse of g(q, a, b, ¢, 7) 1s

g(—qe®, —a + be — 2c%q, —be™™ + 2cqe, —ce”, —7).

The associative law can be verified directly. This group has the 5 x 3
matrix realization

ce’” be™ 2a— bc

| T
0 e 2 b—2gc 0
glg,a,b,c,7) =0 0 e —c 01, (9.4)
0 0 0 1 0
0O 0 0 0 |

where now the group operation is matrix multiplication. It is clear from
(9.3) that the set of all group elements with ¢ = 0 forms a subgroup of
K 1somorphic to G(0, 1) (compare with (4.11)).

A simple computation using (9.3) or (9.4) shows that the Lie algebra
of K 1s isomorphic to ;. In fact we can make the identification

£(9, a, b, ¢, 7) = exp(¢q2) exp(ad) exp(bf™) exp(c /™) exp(7f?)  (9.5)

where the elements ¢+, #3 &, 2 generate #; and satisfy the commu-
tation relations (9.1). Equation (9.5) uniquely determines K as a local
Lie group. Moreover, as a global group K is simply connected.
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9-3 Representations of .7,

Rather than try to give a complete analysis of the representation
theory of J#; we restrict ourselves to irreducible representations which
can be realized by elements of (7(&,) acting on spaces of analytic functions.
For such representations it will be easy to compute the matrix elements,
In particular, we study the irreducible representations p of .#; satisfying
property A: p/%(0,1) (p restricted to the subalgebra %0, 1)) 1s
1isomorphic to one of the irreducible representations R(w, m,, L) or
Tw,u of %(0,1). Such representations will yield additional information
about special functions associated with %(0,1).

Let p be an abstract irreducible representation of 4} on a vector space
V which satisfies the above requirement and let

PF) =) p(F) =0, p€)=E p(2)=0Q

be operators on V. These operators clearly satisfy the commutation
relations

[ 1 =21, [ 9]=29, . [JmJ¥] =E,
Q=2+, [J+,Q] =0, [J% E] =[J% E] =[Q,E] =0.

Theorem 9.1 Every irreducible representation p of ¥} satisfying
property A 1s isomorphic to a representation in the following list:

(1) R(w,m,,p), w, m,, e, w0,

0 < Rem, <1, w -+ m, not an integer.

The spectrum of J? is the set S = {m, + n: n an integer).

(2) 1., @mnel, p#0.

The spectrum of J®is the set § = {—w -+ 7: n a nonnegative integer}.
For each of the above classes the representation space V' has a basis

{ fu}, me S, such that

]%fm = mfmi Efm :.ll"'*fm ? Qfm ~— -I’""fi'n+21I

(9.6)
J+fm — nu’fm+1s -I_J{m = (m == w]fm—l

for all m € S on the left-hand sides of these equations. All of the irreduc-
ible representations in classes (1) and (2) satisfy property 4 and no two
of them are isomorphic.
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The proof of this theorem is elementary and is left to the reader.
We could of course find many other representations of #;, but for
purposes of illustration, the representations listed in Theorem 9.1 will
suffice.

9-4 The Representation R'(w, m,, p)

We will find a realization of R'(w, m,, 1) given by some =’ € (&)
acting on a vector space ¥; of analytic functions of 2. According to the
theory of Section 8-2, the space of cohomology classes of (Z(&,) is
2-dimensional. Moreover, every element of (7(&,) is cohomologous to a
realization 7’ of the form

. d
‘5:3%;(711 ]+:£‘23, ]_:Ei
(9.7)
R =i ) =:8% & 56 E .

T'wo realizations of the form (9.7) are cohomologous if and only if they
are 1dentical.

To construct a realization of R'(w, m,, u) in terms of the operators
(9.7) let 7| be the space of all finite linear combinations of the functions
fm(%) = 2™« defined for all me .S where S is the spectrum of the
representation, and let ¢, = —w, ¢, = u. Then

Bf,. = (3‘—1% — m) T = mMte = mf

f 114 > f ! d 1L !
]+fm = pmite = P‘fmﬂ ’ ]_f-m ZEH?} = —I_m)fmul , (9.8)

Bfp =pa™e=ypf, Qf, =psmet® — uf |

for all m € S. Comparison of these expressions with (9.6) yields a
realization of R'(w, m, , p) in terms of linear differential operators.
Since m + w is not an integer the functions f,(2) = 2™+« are not
analytic and single-valued in a neighborhood of = 0. This is very
annoying for computational purposes. To remedy the defect we map
the space ¥7; onto the space ¥]; = @ }(¥";) where o[ f](z) =
(p(2)) ' f(2) e ¥}, ffe¥{, and ¢(z) = 3™+« Then ¥; has a basis of
the form f,(2) = @[ f,,](2) = 2* where k = m — m, is an integer.
¢ 1induces a transformation + = @11’ mapping a realization 7 of ¢,
by gd’s on ¥7; into a realization = by gd’s on 77 ; see (8.3). Under this



9-4. THE REPRESENTATION R'(w, m, , ) 303

transformation the operators (9.7) with ¢, = —w, ¢, = p are mapped
into the operators

d
]3:H£+mﬂ: ]+-——‘,'J,H, ]_=£+ma+mr

(9.9)
B Q =2t

on ¥7 . The operators (9.9) and the basis functions f,,(2) = 2%, m = m, + k,
provide the desired realization of R'(w, m,,p). (Note that with the
exception of Q = pz? these operators and basis functions are 1dentical
with those derived for a realization of the representation R(w, m,, i)
of %(0, 1) in Section 4-1.)

Following our usual procedure we can extend this realization of
R'(w, m, , n) defined on ¥ to a local multiplier representation of K; on
(¢, , where (7, is the complex vector space of all functions of z analytic
in some neighborhood of the point & = 1. Here 7; D ¥, and (7, is
invariant under the operators (9.9).

The operators A(g), g = gl(g, a, b, ¢, 7) € K;;, defining the multiplier
representation can be computed in.a straightforward manner from
expressions (9.5) and (9.9). The result is

[A(2)f1(2) = exp[u(ga® + bz + a) + meT](1 + ¢/z)"+f(e"x + €7c),
fetl, |efz]<l. (9.10)

Just as in Section 4-1 we can show that every function ke ¥ C
has a unique Laurent expansion

h(z) = i a,2"

R=—a

which converges absolutely for all | | > d, where 1 > d, > 0. (7]
18 invariant under A(g), see Section 2-2.) Thus, the functions
fu(2) = Rhy(2) = 3%, m = m, + k, in ¥7 form an analytic basis for 7] .
The matrix elements A4,.(g) of the operators A(g) with respect to this
basis are defined by

Ak = T Au(@hi(e), k=0,Ll, 42,...

[=—u0
or
exp[u(ge® + bz + a) + (m, + &) 7](1 + ¢/z)motutk gk

— i Aule)st,  lelz| < 1. (9.11)

[=—nta
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Since the operators A(g) define a local multiplier representation of K, we
obtain the addition theorem

Aulgd) = Y Au(@)dn(s), Lk=0,%142.,  (9.12)

j=—w=

valid for g,, g, in a sufficiently small neighborhood of the identity
element. To be precise we should determine the exact domain of validity
of (9.12), just as in Section 4-1. However, it will soon be evident that
both sides of this equation are entire analytic functions of the group
parameters of g; and g, . Thus, by analytic continuation equation (9.12)
holds without restriction for all g, , g, € K .

The matrix elements A,(g) can be evaluated directly from the
generating function (9.11). We examine some specjal cases:

(1) 2(0,a,b,¢c,7) (g=0). In this case (9.11) is identical with the
generating function (4.8). Thus the matrix elements are proportional
to the Laguerre functions,

Aik{g} — Ena+{mn+kh¢k—lL{k—il(_pbf:) (9_13)

P

where p = m, + w is not an integer.
(2) g£(q,0,5b,0,0). The generating function becomes

exp[u(ga® + b2)] 3% = ) Ay(g)s".

f==—10

Comparing this expression with the generating function (4.77) for the
Hermite polynomials we find

0 it [ <k,

Ayplg) = | (—pg)t=e ub : 9.14)
1 — ) Hy_, ( 2 —pq)' 2 ) it [ =k

Here, the matrix elements are entire functions of x and g¢.

(3) g(g,0,0,¢ 0). The generating function is

exp(pga®)(1 + ¢/z)p = ) Re(pg, c)2™

f=—u0

where Rith(ug, ¢) = Ay(g). Thus,

. y (rge®)
+& — i 3 8
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where j ranges over all integral values such that the summand makes
sense. There i1s no simple expression for the functions R? in terms of
functions of hypergeometric type.

Various identities relating these matrix elements can be obtained from
the addition theorem (9.12). (We have already derived identities for the
matrix elements (9.13) in Section 4-1.) Thus, the relation

8¢, 0,5,0,0) g(g,0,8,0,0) = glg +¢,0, b+ ¥,0,0)

umplies (after some simplification) the identity

—

Py (b - § e ()

! 2(9 + g )3 o (B—m)! Vg
A" 4 b
L H, ( W{f_) ; (9.16)

The relation

8(0,0,0,¢,0)g(—b/2¢,0,5,0,0) = g(—b/2e, be, 0, ¢, 0)
implies

i i = fa _|_}' bli—k) /2 be
exp(2et) Ret(—b,e) = Y ot (£ ) T (%7?) (9.17)

j=max(l.k) J
There are many other identities contained in (9.12), but the reader can
derive them for himself,

In analogy with Section 4-6 we can construct a realization of R'(w, m, , 1)
by gd’s on a space of two complex variables where the action of A on
this space is given by a member of 7(8,), (9.2). (The elements of 7(B,)
when restricted to %(0, 1) are identical with the type )" operators.)
From the theory of Section 8-2 it is easy to show that the space of
cohomology classes of (7(8,) is 2-dimensional and that every element of
this space is cohomologous to a realization of the form

%

d 0
T A e g =Era—as i
Wy | I G—w) 7 i
(9.18)
E=pu Q:Eﬂﬁ’(—-xi——&——l—pﬁ—l—ﬁ)
’ ox oy '

Two realizations of this form are cohomologous if and only if they are
identical. Note: The selection of a representative in each cohomology
class given by (9.18) differs on the subalgebra %(0, 1) from that chosen in
Section 4-6. The representative selected here has been chosen for
convenience in the computations to follow,
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To construct a realization of R'(w, m, , ) using the operators (9.18)
we must find nonzero functions f,,(x, y) = Z,,(x) €™ such that Eqs. (9.6)
are valid for all m € S = {m, 4 n: n an integer}. In terms of the functions
Z,(x) these relations become

(1) (d%: = p..'r) Zn(%) = Py ia(),

i) 3‘2 (%) = (m + w) Z,,_y(x), 9.19)

d
(111) (—:!: T + pux® 4+ ¢ — m) Ziod®) = & ofx)

Just as in Section 4-6 we can assume w = 0, u = 1 without any loss of
generality for special function theory. Furthermore, a simple computa-
tion shows (i), (ii), and (iii) are compatible if and only if ¢ = —1. Thus
our problem reduces to finding a realization of R'(0, m,, 1) in terms of
the operators (9.18) where ¢ = —1. In this case Egs. (9.19) have the
following linearly independent solutions for all m € S:

(1) Zu(x) = (1) 27" 2H,,(x]3/2) = (—1)""™0 exp(x2/4) D,,(x),
(2) Zn(x) = exp(x?/2) e m+D 20 (m 4 1) 20120 (ix/A/2)
= exp(x*/4) eV 2 (m 1) D_,,_,(ix). (9.20)

The H,(x) are Hermite functions defined in terms of parabolic cylinder
functions by H,(x) = 2™/ exp 4*/2D, (4/2x). When m is a positive
integer, which is not the case here, H,,(x) is 2 Hermite polynomial. The
fact that expressions (9.20) satisfy the recursion relations (i) and (ii)
follows easily from (4.66) and (4.67). Relation (iii) can be derived from
(1) and (i1). These solutions are entire functions of x.

Clearly, if the functions Z,, , m € S, are given by either (1) or (2), then
the functions £, (x, y) = Z,,(x) €™ form an analytic basis for a realization
of the representation R'(0, m, , 1) of ;. As usual this representation of
s can be extended to a local multiplier representation of K, by operators
T(g), g € K5, on the space .Z of all functions analytic in a neighborhood
of the point (x° 3°) = (0,0). A straightforward computation using
(9.5) and (9.18) yields

[T(e)f](x, £) = (1 + 2t%g) 2 exp |

x*t%q — txb — bHA2
1 + 2% N ﬂ]

'f(x—kbt—a:t—l—lch te™ )
(1 4 2e2g)/2 S (1 2e2g)kE ]

fe&F, (9.21)

where t = eV,
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The matrix elements of the operators T(g) with respect to a basis
Su(®, 1) = Z,(x) t™ satisfying (9.19) are given by the functions 4,(g),
(9.11), where w = 0, » = 1. Thus we obtain the relations

[T@) il t) = 3 Au@) fonoss(s 1.

f=—co
Corresponding to the basis
Fngsrl®,8) = (—1)F 2-MRI2 H o (1)) 7) tmotE

for all integers &, this equation can be written in the form

x%*t2g — txb — b2 x 4+ bt —ct™ —2ct g
=P [ 1+ 2i% T "‘] Hp e ( Q201 + 2:2q))72 )
—t/V/2) i - X t oyl
. (1 _I_(Ztﬂg]{mg+k+1}fﬂ glmytklr — Z Au:(g} Hmﬂ +1 (ﬁ)(— ﬁ) . (91-22)

f=—aon

For ¢ = 0, (9.22) is identical with (4.70) so we will omit this case.

Ilfta=c=17=0,¢g= —14 (9.22) reduces (after some simplification)
to the identity

_ 2xth — (x* 4 b?) £° x — bt
— 3\ —(m+1) /2
=gy oangy E— ]Hm(a —zﬂ]w)

tﬂznﬂ
—— H,(0) Hppn(%), 2] <1, (9.23)

o
fi=0

valid for all m €  not an integer. (In the next section we will show that
(9.23) 1s also valid for m a nonnegative integer.)

lfa=b=7=0, ¢g=— 1, (9.22) simplifies to
-~ — 2 x +c(t + 1)
_ &y —(m+1) /2
G = Exp[1hfﬂ]Hm( (1 — 272 )

= P e A S TR

==

where A7(c) = (—+/2)™ R7(—4%, v/2¢c) has the generating function

exp(—22/4)(1 — 2¢/z)™ = i h™(c) 2, | 2¢/z | < 1.

R==o0
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Here m is not an integer. However, in the next section we will show that
this equation remains true for m a nonnegative integer.

Similarly, the second set of basis vectors (9.20) can be used
to derive identities for the Hermite functions. For example the

case a = ¢ = 7 = 0, ¢ = —1, yields the identity
 12vm /2 x + bt = = (m n
(1 ex ol ) Hfm ( {] HE IE)UE) ﬂz,u (ﬂ) Hﬂ(b] Hm—n(x) ", | t | < 1:

a generalization of (9.16).
By substituting appropriate choices for the group parameter into (9.22)
the reader can derive additional identities obeyed by the Hermite

functions.

9-5 The Representation 1/,

In analogy with the procedure of the last section we look for a realiza-
tion of the representation 1’, , given by some =& J/(&;) acting on a
vector space of analytic functions of z. A comparison of expressions
(4.17) and (9.7) shows how to proceed. Namely, in (9.7) we set
¢, = —w, ¢, = W to obtain
]3=z-d-—w JF = px ]‘=£ E=p  Q=npzt (9.24)

dz i * dz’ ’ :
Designate by ¥, the space of all finite linear combinations of the functions
h(2) = 2% kR =0,1,2,.., and define the basis vectors f,, of ¥, by
fn(2) = hy(2) = 3% where m = —w | k, & = 0. Clearly,

]:%fmz (-—m—-—:&-";f;) gkszmi ]+fm :{Hz) zk:”fm+1r
Tn =t = (m+ @) fnts B = i (9.25)

Qfn = (#2?) 2* = pfnse -

These relations define a realization of 1, , on %,.
Moreover, this realization can easily be extended to a local multiplier

representation B of K, on the space (7, consisting of entire functions of
z. The operators B(g), g = g(g, a, b, ¢, 7) € K, defining this represen-
tation are easily computed:

[B(g) f 1(z) = exp[p(gz® + bz + a) — wr] f (€2 + €7¢),
fed,. (9.26)
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Furthermore it is straightforward to show that the operators B(g) form
a global representation of K; . The matrix elements B,,(g) of B(g) with
respect to the basis { f, = &} are given by

B A = X Bu@) b, h=0,1,2,..

or

exp[p(gs® + bz + a) 4 (k — w) 7](z + c)* = i Bi.(g) 2% (9.27)

=0

The addition theorem for the matrix elements is

Bu(gigs) = ¥ Bule) Balg), Lk >0, (9.28)

j=0

valid for all g, , g, € K. Corresponding to some special choices of the
group parameters the matrix elements have the following explicit
€XPressions:

(1) £(0,ab,¢c, 7). For ¢ =0, (9.27) becomes identical with the
generating function (4.22). The matrix elements are thus proportional
to associated Laguerre polynomials.

Byi(g) = evatte—ahgh-lL (h—0(_,b), (9.29)

(2) &(g,0,5,0,0). Exactly as in (9.14) we find

Bu(g) = { (—pg)i-h2
O—wL =

0 . i O<ixh
14( if I>k>0.

)

(3) £(¢9,0,0,¢,0). In this case (9.27) reduces to

exp(pg2®)(z + c)* = i RE (g, c) ! (9.30)
1—0

where R} _,(ngq, ¢) = By(g). Thus,

A
RE (ug, c) = c*1k! ;ﬂ T k{f";ﬂ T (9.31)
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where j ranges over all integral values such that the summand is defined.
Comparing (9.30) with the generating function (4.77) for the Hermite
polynomials we find

L2 k
o A et ) - Y EX R (ug,0) 9.32)
k=0

Just as in the last section, the addition theorem (9.28) can be used
to derive identities obeyed by the matrix elements. This task will be left
to the reader.

Armed with a knowledge of the matrix elements of 1), we now
procede to construct a realization of this representation by gd’s on a space
of two complex variables, where the action of J£ is given by a member
of 2/(B,), (9.2). In pamcular we will use the operators (9.18) withc = —p,
To construct a realization of 1/, , using these operators it is necessary
to find nonzero functions f,,(x, y) = Z (x) e, m = —w, —w + 1,...,
such that Egs. (9.6) are valid with

9 8 2
: R e 3 ey Al MR — s ¥
Pesmann, de=e (E::: ”’“")’ I ¢ B
8 %
E = Q:‘*’w(‘xa—-’”@Jr”xz_“)'

Just as in the derivation of Egs. (9.19), it is easy to show that without
loss of generality for special function theory we can assume w = 0, & = 1.
Then, expressed in terms of the functions Z, (x), Egs. (9.6) become the
recursion relations

0) (= %) Zu(®) = Znuale),

() — 2 Zn(x) = mZpo(x), (9.33)

(iii) (—x % +x? — 1 — m) Zp(%) = Zppia(%),

where m takes the values 0, 1, 2,... . The functions Z,(x) are determined
to within an arbitrary constant by (9.33). In fact relation (ii) implies
Zy(x) = c¢ for some constant ¢. If we set ¢ = 1, the remaining solutions
Z,(x) are uniquely determined:

Z(x%) = (=1)" 27™2H,,(x/v/2) = (—1)™ exp(x*/4) Dp(x),  (9.34)
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where the H, (x) are Hermite polynomials. Thus the vectors
Jl2,y) = Z(x) €™, m = 0, 1, 2,..., where Z,(x) is given by (9.34),
form a basis for a realization of the representation 1, ; of ¢ .

This infinitesimal representation of J; can be extended to a local
multiplier representation of K; by operators T(g), g € K; , on the space
& of all functions analytic in a neighborhood of the point (x°, y°) = (0, 0).
Indeed we have already computed the operators T(g) on #, Eq. (9.21).

‘The matrix elements of T(g) with respect to an analytic basis { f,,(x, ¥)}
satisfying (9.33) are the functions B;;(g) given by (9.27) (w = 0, p = 1).
Consequently,

[T d=9) = 3 Ba@fi®y), k=0,1,2,..

=0

or

w2t — txb — b2%2 x + bt + ct=1 — 2etg
SR [ [+ 2% “] Hy ( 21 + 2t%))' 2 )

(V2 & L (9.35)

. (1 -+ 222g)lk+1)/2 — Z By.(g) H, (v—ﬁ)(ﬁ_ ﬁ _

For ¢ = 0 this expression 1s identical with (4.76). Fora = ¢ = r = (),
g = —4%, it reduces to (9.23) where now m is a nonnegative integer. In
the special case n = 0, (9.23) becomes

2xth — (xﬁ + b®) t2 ] “" zﬂz—

n—[l

(1 — %) 12 exp [

H,(b) H,(x), | €] = 1;

(9.36)

which is Mehler’s theorem, (4.158).
Finally, f a=b6 =1 =0, ¢ = —3, (9.35) reduces to the identity

a2y 1 =
(1o e [0 (£ )

= Z AL e} ) 5 (9.37)

f=0)

where A} i(c) = (—V/2)* 'R} (—1%, v/2c) is given by the generating
function

exp(—=%/4)(z — 2¢)* = ij hy (c) 2%
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This completes our analysis of the special function theory of % .
Note that the identities for Hermite functions derived here have been
obtained from a study of the operator realizations «; and B, , (8.28) and
(9.2). We could also have used B; , but this would not have led to any new
results. The operators f,, B;, By, on the other hand, do not yield
realizations of the representations R'(w, m, , p) or 1.  , but rather lead
to realizations of representations of .#; which we have not classified here.
In particular, 8, can be used to realize certain reducible representations
in such a way that the basis vectors turn out to be proportional
to generalized Laguerre functions. Thus a study of B, leads to new
identities for Laguerre functions.

9-6 The Lie Algebra ¢,

Corresponding to a pair of positive integers (p, g) let %, ., be the
complex 3-dimensional Lie algebra with basis #3, #+ #-and commu-
tation relations

(#5771 =p2%  [AF1=—¢F, [FHLFE]=0. (9.38)

Clearly, ¢, , is isomorphic to 7} . In addition the following isomorphisms
are easily established:

Lemma 91 ¢, =~ 9, .;%,, .. =~ %,,; for all positive integers
P, q, n.

According to this lemma every Lie algebra & .  is isomorphic to a
Lie algebra &,  such that (1) p and ¢ are relatively prime positive
integers; (2) p is odd; and (3) if ¢ is odd then p > ¢. Consequently, from
now on the pair (p, ¢) will be assumed to satisfy properties (1)~(3). It is
obvious that two Lie algebras 4, , ¢ . . with subscripts satisfying
these properties, are isomorphic if and only if p = p’ and ¢ = ¢,

Applying the techniques developed in Chapter 8 we can determine all
of the transitive effective realizations of &, by gd’s in one or two
complex variables. Thus, from (8.26) there follows the realization

0 % e, e  r—3 k=2 s—0. (9.39)
Every transitive effective realization of 4, = by gd’s in one complex
variable is an element of (Z(7,).

Similarly, by making use of Lie’s tables (Lie [1], Vol. IIL, pp. 71-73),
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it can be shown that every transitive effective realization of ¥, A by gd’s
in two complex variables is an element of ¢%(9;), j = 1, 2, 3, where

¢ d d
- e -z — =1 =
B8 5 Elﬁzﬂ’ e IEJEE’ =3, "=, =%
% d % ¢
¢ d
. Pz =z - = it s

9-7 The Lie Group G,

Corresponding to a pair of relatively prime positive integers (p, q)
such that p is odd, denote by G, , the 3-dimensional complex Lie group
with elements

glb,e, 1), bye,TEC,
and group multiplication
g(by , ¢y s 1) g(by, Co 5 7s) = g(by + €P1by , ¢4 + €716y, Ty + 7). (9.4])
It is easy to check that the multiplication is associative. Furthermore,
e = g(0, 0, 0) is the identity element and g(—e b, —e?"c, —7) 1s the

unique inverse of the group element g(b, ¢, 7).
G, , has a 4 X 4 matrix realization

D
L @0 7
0 e 0 ¢
g{bl £ T) = | 0 0 e b (942)
D 0 0 1

where matrix multiplication corresponds to the group operation.
Comparing (9.42) with (1.35) we see that G, ; is isomorphic to T}.

The Lie algebra of G, , can be computed from either of the expressions
(9.41) or (9.42), and is easily recognized to be isomorphic to ¥, .
Indeed we can make the identification

g(b, ¢, 7) = exp(,f*) exp(¢f™) exp(r.f?) (9.43)

where £+, #3 generate ¥, ,and satisfy the commutation relations (9.38).
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9-8 Representations of ¢,

Let p be a representation of %, , on an abstract vector space I and let
p(£*) = J& p(£?) = ]3, be operators on V. Clearly,

UL =gl DAl ==4l5 [%J] =0 (9.44)

Note that the operator CP4 = (JHY(J)? = (J7)?(J+)? commutes
with all operators p(«), x€ %, ,, on V. For p irreducible we would
expect CP+¢ to be a multiple of I.

In strict analogy with our study of the representation theory of 7, we

will classify all representations p satisfying the properties:

(i) p is irreducible

(i1) Each eigenvalue of J® has multiplicity equal to one.
There is a countable basis for I consisting of eigen-
vectors of J3.

(9.45)

We give without proof the results of the straightforward classification.

Theorem 9.2 Every representation p of 4,  satisfying (9.45) and
for which C?:¢ £ 0, on V, is isomorphic to a representation of the form
0O, J[w, m,) defined for w, m, € ¢ such that @ = 0 and 0 << Rem, < 1.
The spectrum of ]J? corresponding to Q, (w,m,) is given by
S = {m, + n: n an integer} and there is a basis { f,,}, m € S, for ¥ such
that

J:afm = mfm ’ ]+fm = wfm-l—:lll
(9.46)
Vi = mfm—q ] CPY o = ()P = WP, .

There exist isomorphisms O, (w, m,) ~ O, (', m,) if and only if
m, = m,, w = w'd, where d is a (p + g)th root of unity.

In accordance with the usual procedure, we can use the operators
l(y,) to construct a realization of the representation O, (w, m,). This
can be done by introducing the change of variable = ¢¥ in (9.39) and
considering the operators

R O SR S (9.47)

dz

in (¢(y;). Thus, let ¥] be the complex vector space of all finite linear
combinations of the functions #4,(2) = 2* n =0, 41, +2,..., and
define operators J*, J® on #; by (9.47) where ¢;, = m,, ¢, = w. Define
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the basis vectors f,, of ¥] by f,.(2) = &,(2) where m = m, - n and =
runs over the integers. Then

Pla = (z ;g" -+ mﬂ) 0 = i = 6l

o = (@) 8 = afrgs  Tfn = (@52 = afpg,  (948)
Cﬂ'?fm = wﬁ-hﬁfm .

These equations agree with (9.46) and yield a realization of Q,, (w, m,).
The differential operators (9.47) (¢; = m,, ¢, = w) induce a multiplier
representation 4 of G, , on the space (7, consisting of those functions
f(2) which are analytic and single-valued for all z %= 0. This multiplier
representation is defined by operators A(g), g = g(b,¢, 7)€ G, ,:

[A(g)f1(2) = explw(bz? + ca~ %) + m,7] f(e72), fel . (9.49)

Clearly, (%, is invariant under the operators A(g) and the group property
A(g.g:) = A(g;) A(g,) 1s valid for all g,, 2,6 G, , .

The matrix elements A,.(g) of A(g) with respect to the analytic basis
{fn = h,} of 0, are defined by

[A(g) 1) (2) = i Au(g) (=), £€Gpey kR=0,%l,£2,...,  (9.50)

l=—oo

or

explw(bz? + c279) + (m, + k) 7] 2 = > Ay(g) 2 (9.51)

[=—m

where g = g(b, ¢, 7). Explicitly,

A (g) = eMatiERA(b, €) (9.52)
where

i :t=+af;.q¢ju}j
o b, ) = wirrihies [:r:u . .
¢l = ;u (m +7g)! (s +-jp)!

(9.53)

The nonnegative integers s, , #;are uniquely determined by the properties:

(1) 1= mp— sy
(2) If I = nyp — s;g where nj, s; are nonnegative integers, then
ny+ sp = n;+ 5.

Since p and g are relatively prime, the integers n;, 5, can easily be shown
to exist for all /. For example, if p = ¢ = | then s, = 0, n; = [ for
12 0and s, = —[ n, = Ofor L <.
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If bc -« 0 we can introduce new group parameters #, v defined by
b = ro?/(p + q), c = rv9(p + ¢). In terms of these new parameters
the matrix elements are

A, (g) = ematRrgl—kI2:4(wr) (9.54)
where
_ r RS ((p + @
I}I'-l.'.' — - - . .
1) (}f’ 1= f}) En (7, + jg)! (s + 7p)! (%:35)

It follows from the ratio test that 75°%(r) is an entire function of r for all
integers [. Here I}''(r) = (—i)! J(ir), 1 = 0, is the ordinary “modified
Bessel function” (see Erdélyi et al. [1], Vol. II). Thus we can consider
the functions I7'%r) to be a group-theoretic generalization of Bessel
functions. Substitute (9.54) into (9.51) to obtain the simple generating
function

¥ a0
exp [p 7 (=7 + 2_’5'}] = Lz‘m IP9(r) 2. (9.56)

The group property of the operators A(g) implies the addition theorem

Ap(818) = Z Aii(g1) Ajn(gs), (9.57)

j=—an

valid for all g, , g, € G, , . This leads immediately to the identity

FPiby +by, 00+ 6) = ), F2i(by, ) Fi(s , ). (9.58)

j=—m

We could also use the addition theorem to derive identities involving
the functions 17'%(r). However, this will not be done here as most of the
results so obtained are special cases of identities which will be derived
in Section 9-10.

9-9 Recursion Relations for the Matrix Elements

Denote by (¥(G,, ,) the space consisting of all entire functions on the

group G, ., 1.e, of all entire functions of the parameters b,¢, 7.
Clearly, the matrix elements Ay(g) are elements of /G, ,). The

representation P of G, , on 0/(G,, ;) defined by
(P )1g) =flgg), [ellG,,), (9.59)
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for all g, g" € G, , satisfies the relation
P(g12.)f = P(g)[P(g.)f]

and determines G, , as a transformation group. According to (9.57) the
action of P on a matrix element 4, is given by

[P(g") 4il(g) = Auleg) = ). Aulg’) Ailg). (9-60)

l=—m
Comparing this expression with (9.50) we find that for fixed j the
functions {4}, kK = 0, 41, £2,..., form a basis for a realization of the

representation O, (w, m,) of G,  under the action of the operators
P(g). Therefore, the Lie derivatives J*, J® defined on (7(G,, ,) by

FF(e) = 75 [Plexp b IFYe) |
17(8) = g [P(exp £ ) Ne)| (9.61)
() = 7 [Plesp £10)| . S0,

satisfy the relations
PAj(g) = (my + k) As(), 174;1(8) = wd i ,(g),
J74;1(g) = wd;_q(8), (9.62)
Crad;(e)= (T4 (77 Ale) = 0™ dule),  jok =0, 1, 42,....

Equations (9.62) yield recursion relations and differential equations for
the matrix elements 4. . We will use these equations to derive recursion
relations for the generalized Bessel functions 77'%(r). Thus, we assign to a
group element g = g(b, ¢, 7), bc # 0, the local coordinates [r, v, 7],
where b = rv?/(p + q), ¢ = rv™¢(p + q). Then if g = g(b', ¢’, '), a

straightforward computation shows the local coordinates of gg’ are
[F(l e {P | !}") ful@—pepff}’}w[w-q? (1 M1 (P 1 {f} r‘lw'fe_qfc’)'*”f”“"r“},
EJ(I 4 (P i Y Q’] r—lﬂ—wgmﬁ,*)lﬂn-em (1 ur {P HE l}"] ¥ -1ﬂag--u¢{.:*)1;t;r+-aj] T - 1.’]

for | &' |, | ¢’ | sufficiently small. It follows from the definition (9.61) that
the Lie derivatives J#, J? are
¢ d )

+ — BT o e =
It =t (‘far““’aﬂ

5 5 3
e P el by s e AJ e e
=t “””(Par *"”au)* Fri=as

(9.63)
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Substituting (9.54) and (9.63) into (9.62) and factoring out the
dependence on v and 7, we obtain the equations

d m d m
05 + ) o) =200, (p 5 — =) I2%0) = Izg (o),

I

s+ e s ) lem T

or ¥

.(pg_r_ m"‘(i"”?](p g’; . m‘|‘{f_2)*?) "'(Paa_r"?_)jf:{q(f)

—I79(r), m =0, +1, +2,.... (9.64)

In particular, the functions I7%(r) are solutions of an ordinary differential
equation of order p + g¢.

9-10 Realizations in Two Variables

The operators 8, and 8; , (9.40) can be used to construct realizations of
O, 4w, m,) on spaces of functions of two complex variables. However,
the basis functions so obtained are elementary and of little interest. On
the other hand a realization of O, (w, m,) by 8, does lead to new results.
To see this we introduce new variables x, y, where 2, = xe?¥/(p - q),
%, = xe~¥/(p + ¢q), in the expression for §, :

7

Ve S
J_' a}'!

c 1 ¢ %, 1 E.:") (9.65)

]+:€~—w(ﬂ+;@), J-quy(Pc?'_x—EE@'

To construct a realization of O, (w, m,) using the operators (9.65) we
must find nonzero functions f, (x, y) = Z,(x)e™; m = m, - n,
n =0, 41, £2,..., such that expressions (9.46) are valid. These
expressions are equivalent to the equations

(045 =) Z0) = Znas® (P e+ ) Zas) = Znole), (9:66)

X

(d m—p)(gd m—Ep)“_(qd_m—gp)(pd+m—~(p—i)g)

q dy X dx X dx X dx y
2 m—(p—2)q\ . (, 4 m B
(P dx T X ) (PEE T ?) Zn(¥) = Zp(x), (9.67)

where without loss of generality for special function theory, we have
set w = 1. Thus, the functions Z, (x) are solutions of differential
equations of order p -} g.
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In general it is possible to find p - ¢ linearly independent solutions
of Eqgs. (9.66) and (9.67). However, we will be content with a single
solution. It is a consequence of (9.64) that if m, = 0, the functions
Z (x) = I”;%(x) are solutions of these equations. Following a standard
prﬂcedure in the theory of special functions we shall use analytic
continuation to define I2%x) for m an arbitrary complex number and
show that the functions Z,(x) = I”;¥(x) satisfy the required relations
(9.66) and (9.67) even 1if m, 7 0.

An application of the Cauchy residue theorem to (9.56) yields

2mlP(r) = f T -eXp 4 : 5
b 2

m =0, +1, +2,...,

(27 + 3“‘"}] dz,

where C is a simple closed contour surrounding the origin in the z-plane.
Without changing the value of the integral, the contour C can be
deformed into a loop D which starts at infinity on the negative real
z-axis, encircles the origin counterclockwise and returns to its starting
point. (The proof of this statement is almost word for word the same as
the well-known proof of the analogous statement in the special case
p = g = 1, see Whittaker and Watson [1], Chapter 17). Since p 1s odd,
the integrand is bounded on D for Re r = 0. Thus, we have

_ (0}
2milza(r) = [t exp (27 g—ff)] (9.68)

P—|—

0 - 5 o # - .
where fi: denotes integration along D. Since the integrand is now

single valued on D even for m complex, we can use (9.68) to define the
function I2:%(r) for arbitrary values of m and Re» = 0. Moreover, by
differentiating under the integral sign in (9.68) we can verify
that Eqgs. (9.64) remain valid for arbitrary m. Thus the functions

Z,(x) = I"%(x), m = m, + n, define a realization of the representation
O, (m,,1)of G,

We can Dbtam mnrﬂ information about the generalized Bessel functions
122 by mimicking the standard treatment of ordinary Bessel functions
in terms of contour integrals as given, for example, by Whittaker and
Watson [1], Chapter 17. If » > 0, introduction of the new variable
w = (r/(p + ¢))'/Pz in (9.68) leads to the expression

O q_)m”} [ 2’ w3 exp [w? + (p - q)m'ﬂ”“ we du. (9.69)

The right-hand side of this equation can be analytically continued to
define 12'%(r) as an analytic, but not single valued, function of 7 for all
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r # 0. In particular r~™/P[24(7) is an entire function of ®+2/?_ T obtain
a series expansion for I2'%(y) we use

o )" ] = & " )

k=0

i (9.69) and integrate term by term. From the theory of the gamma
tunction (Whittaker and Watson [1], Chapter 12),

r(04) —21¢ sin[m(kg + m + 1)] r (f — kg —m )

J exp(w?) ew=F-m-1 dyy —

= kg -+ m P
Thus,
o ] g r \MPHOP sin[w(kg + m -+ 1)]
i = (P + q) k=0 (ﬁ +: q) klp
—kg — m
r ( - ) . (9.70)
For p = 1 this expression simplifies to
3 -5 r m: % ¥y k(14-q) 1
Lntr) = (I - g) _gﬂ (1 -+ q) RI(m + kg +1)° 29d)

We could construct additional solutions of equations (9.64), linearly
independent of the functions I%(r), by choosing a different path of
integration in (9.68) (see Khriptun [1]). However, for purposes of
llustration we will be content with the solutions I2:(r).

9-11 Generating Functions for Generalized Bessel Functions

As shown above, the functions f,,(x, y) = I”4x) e™, m = m_ -+ n,
n an integer, form a basis for a realization of the representation 0, (1, m,)
of ¥, , . Following our usual procedure we will extend this representa-
tion to a local multiplier representation of G, ., in the space .# of
functions analytic in a neighborhood of (a2, 3°) = (1, 0). The operators
I(g), & = (b, ¢, 7) € G, , defining this multiplier representation can
easily be computed from (9.65) and (9.43). The result is

[T(e)f1(x, 1) = f [x (1 " b(p -l q) )ﬂ.ﬂ'{i’?-l-fl} (1 n .c(p + q) fﬂ)i'?."iﬁ-i-q}:

xt¥ X

e (1 + b(p + ff))”“"*“ (1 + c(p + 9) f“’)‘”‘”“] |

Xtr X

fe&F, (9.72)
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valid for | b6(p + q)/xt? | < 1, | e(p + q) t9/x | << 1, where ¢ = e¥. The
matrix elements of T(g) with respect to the analytic basis

{ fin(®, t) = I7%(x) £}, are the functions A,(g) given by (9.52) and
(9.54). Thus,

[T(@) fosl(x2) = Y, Au(g) fngal®8), k=0, £1, £2,...,

[=—on

or

2w [::: (1 b(p + 9'))‘”'“"* ) ( (p +q) f“)f‘f’”’* ‘”]

xt? X

. ( x +op gt )‘““P*‘”
x +elp+q)tt

Z F22(b, o) 1) t,

| b(p + q)fxt? | < 1, le(p +q)tx| < 1, (9.73)

forall me . If ¢ = 0, t = 1, this expression simplifies to

Iva [x (I L b(p +9) )qf{il+ﬁ}] (1 " b(p —+ q) )m;{znﬂ}

X X
e dl bl ‘
=Y s, b +a)x| <,
=0 ©°

while for 6 = 0, t = 1 it becomes

F2:e [x (1 IS e(p + q) )wmw}](l L c(p + q))—m;{pﬂl

& X

y

= Z g_| Iﬁ.{izq(x)i 15{}") -+ q)f.r] <7 1.

=0

If b =c¢=r7/(p + q) # 0 the matrix elements can be expressed in
terms of generalized Bessel functions and (9.73) becomes

I;J;r:r [.r (1 4 r )E."[I?+"I} (1 ) ri9 )ii'h"l:?+ﬁf):|( x4+ rt? )m}'{ﬂ-ﬁ-ﬂ}

xt¥ L X -+ ¢

Z Toua(yy I8 () 2 | rfxt? | < 1, | rtdfx | << 1.

==

For p = ¢ = 1, Eq. (9.73) 1s equivalent to the Bessel function identity
(3.29).
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Similarly, in analogy with Weisner’s treatment of Bessel functions as
given in Section 3-4, we can use the operators

¢
- S T + — =P =P L i,
J raz* t ( :

expressions (9.65), to derive generating functions which are not related
to the matrix elements 4,,(g). The basic observation to be made is:
If f(x, ) is a solution of the equation CP Ui = (JN)YJ)?f = wf then the
function T(g) f given by the formal expression (9.72) 1s also a solution
of this equation. Moreover, if f is a solution of the equation

(6 J* + 2]~ + % P)f (%, t) = A (x, 2)
for constants &, , x, , x5, A, then T(g) f is a solution of
[T()(x:J* + %]~ + 2]%) T(e [ T(e)f] = A[T(e)f]
where
T(e)(x It + 2]~ + ,]%) T(g )
= (%1677 — bpixy) Tt + (xpe7" + cgxg) T~ + x,]5.
As an illustration of these remarks, consider the function

f(x, 1) = L3%x) 1™, me ¢. In this case CP49f = f, J3f = —mf, so the
function T(g) f satisfies

CoUAT()) = T, (—bp)* + eql~ + P T(e)f] — —m[T(@)] (9.74)

where ¢ = g(b, ¢, 7)eG,, . Ifc =7 =0, b = 1, T(g) f can be written
in the form

h(x, t) = [T(g)f (x, 1) = {xi” (x _|_p :; g)ﬂ]—mﬂi—‘{i’HE}}

@ L4 Hxiﬂ (a., 4 P T 9")“]1”“‘-"1

ir

(2 + p 4+ g)y™P.  (9.75)

Since x~™/P[24(x) is an entire function of x®+0/2, } has a Laurent
expansion in # about ¢ = 0:

b, t) = Y h(x)tm2,  |xt?| <p +q.

=00



9-11. GENERATING FUNCTIONS 323

Substituting this expansion into the first equation (9.74), we find
Z,.»(x) = h_,(x)1s a solution of the generalized Bessel equation (9.67) for
n =0, +1, +2,... . At this point we use the fact: FFor m an integer the
only solutions of (9.67) which are regular at x = 0 are cI”)(x), ¢ a
constant. This statement can be verified by computing the indicial
equation of (9.67) (see Ince [1], Chapter 7).

Since k(x, t) is bounded for x = 0, we have A, (x) = ¢, I}:(x), ¢, € €.
Hence,

o

hx,t) = Y, ¢ IP9(x)tn

The equation (—p ]+ + J?) A(x, t) = —mh(x, t) implies pc,., = (m—np) c, .
The constant ¢, can be determined by setting x = 0 in A(x, ¢) and using
(9.70). Consequently,

el I'(—mfp) sin[m(m + 1)] - (—1) I'[(np — m)/p] sin[m(m -+ 1)]
. pr ! " p 3

and we obtain the identity

[xp (r L P t—l; q)ﬂ]—-ﬂzs’{ﬁii‘!+ﬂ'}} [ [ri'* (x —|—p ; q)ﬂ}]ﬁ{i‘?+q}

(7 + p + g)ie

_ i (—1)® P ( np }; m ) sinfa(m - 1)] f;i;]q(x) e

- p'ﬂ'

| xt? | < p +g. (9.76)

When p = ¢ = 1 this expression is equivalent to (3.38).



