CHAPTER 4

The Wave Equation

4.1 The Equation ¥, — A,V =0
Here we are concerned with the real wave equation

(am_a”_azz}w{x)=0, .-T=(Iu,.xl-,x2}* {I.l}

It 1s well known that the symmetry algebra of (1.1) is ten dimensional
with basis the momentum and energy operators

P,=3,, a=0,1,2, (1.2)
the generators of homogeneous Lorentz transformations
M,=x,0,—x,0,, Mo =x00,+ x,8g, My =xy0,+ x,3, (1.3)
the generator of dilatations
D=—(5+x000+x,0,+x,9,), (1.4)
and the generators of special conformal transformations
Ko= —xo+(x-x —2x3) 8g— 2x4x, 3, — 20X, 0,
K|=x,+(,r-x+21f)8,+2x,xuaﬂ+2x|xzaz, (1.5)
Ky=xy+(xx+ 2x3) dy+2x,x409+ 2x,x, 9,
where

AV =XV~ Xy V1 — X V=X Vo—X"Y.

(We are ignoring the trivial symmetry E.)
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The Wave Equation 4.1

It 1s convenient to introduce another basis for the symmetry algebra
which clearly displays the isomorphism between this algebra and so(3,2).
We define so(3,2) as the ten-dimensional Lie algebra of 55 real matrices

@ such that @G>+ G32@ =0 where

3 5
G2= I = 2 gjj_ 2 E‘;kk
=1 k=4

and b, is defined by (6.4), Section 3.6. It is straightforward to check that

the matrices
rﬂb=gﬂb_6bﬂ=_rﬁﬂ" a#b,
T s =8us+6g =0y, 1<a,b<3, 4<A,B<5,

Lig=— E‘AB +&;BA = _FBA:

form a basis for so(3,2) with commutation relations

[Tab= Tm". = 3{:rrra¢f + aadr be + ﬁmrdb + ﬁdbr cat

[FEE? Pcd: = 'Smrrcﬂ + 3acrdsu [F.-Ib! P45] = 5,,,51*4,5 JE §A4F5b:
[raE? rcﬂ: ™ aﬁﬂraf N ﬁafFEDT' [Fﬂb? F45] = U

This I' basis 1s related to our other basis via the identifications

Py=T1,+Ts, P =T,+T1; Py=T;+15;,
K-:]=Fx4_r45= Kizrlz_rzﬁw K2=I‘I3—l"
M, =T, My, =Ty, Mo =T, D=T\..

(1.6)

(1.7)

(1.8)

The symmetry operators can be exponentiated to obtain a local Lie
transformation group of symmetries of (1.1). In particular, the momentum

and Lorentz operators generate the Poincaré group of symmetries
Y(x)—>¥(xA+a), a=(aga;,a), AESO(1,2);

the dilatation operator generates

exp(AD )¥(x) =exp(—A/2)¥[exp(—A)x];

(1.9)

(1.10)
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4.1. The Equation ¥, —A,¥ =0 225

and the K, generate the special conformal transformations
x+a(x-x)
1+2x-a+(aa)(xx) |
(1.11)

exp(a-K)¥(x)=[1+2x- a+(a-a)(x-x)] " 1\1’(

In addition, we shall consider the inversion, space reflection, and time
reflection symmetries,

P¥(x)y=[=%%] V2 (- x/(xx)),  S¥(x)=¥(x, —x;,x,),

(1.12
TV )=V (—x5:Xi;%;), T=I"", S=87 T=T7, ;

which are not generated by the local symmetry operators. It follows from
the expression for the inversion / that
IK. I~ ==p. 0 IDI='==p;

> (1.13)
IM{:‘,BI |=Mﬂﬁ'

In analogy with the treatment of the Laplace equation in Section 3.6, we
can verify that the wave equation is class I. Furthermore, although the
space of symmetric second-order elements in the enveloping algebra of
50(3,2) 1s 35 dimensional, there are 20 linearly independent relations

between these operators on the solution space of (1.1). For example, we
have

() Pg—P}—Pj=Ki— K- K}=0,

(i) Ih+Th+T3,=1+T%,

(111) MFZ_ME%I_M{]EEZ%_D{

(iv) T3s—T%—T%=;+T%, (1.14)

valid when applied to solutions of (1.1).

As 1s well known [44, 66, 118], by formally taking the Fourier transform
in the variables x, we can express a solution ¥(x) of (1.1) in the form

qr{x)={4w)"ff:[exp(fk-x)f(k)+exp(f;€-x}f (k) | du(k) (1.15)

where ko=(ki+k3)'/?, k=(—ko,k\.k,) and du(k)=dk, dk,/k, Let K =
J4 @IC_ be the space of all ordered pairs of complex-valued functions
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226 The Wave Equation 4.1.

Fk)= {f(k)j(k}} defined on R? such that
[ [P +17P) (k)< oo

(Lebesgue integral), and consider the indefinite inner product on JC given
by

F,Gy= [ [(12-T2)duk). (1.16)
Then [44, 66] the functions ¥, @ related to F, G by (1.15) satisfy

(T, BY=CF,G)=2i [ [ (¥(x)3,®(x)— [ 9¥(x)]B(x))dx,dx,, (1.17)

Xg= f)

independent of z. (More precisely, (1.17) can be derived from (1.16) by first
considering the dense subspace of J( consisting of C* functions with
compact support bounded away from (0,0) and then passing to the limit.
For FEJ( the corresponding ¥(x) is a solution of (1.1) in the weak sense
of distribution theory; it may not be true that ¥ is two times continuously
differentiable in each variable.)

The operators (1.2)(1.5) acting on solutions of (1.1) induce correspond-
ing operators on J{ under which 3(, and J{_ are separately invariant.
Indeed, with repeated integrations by parts we can establish that the action
of these operators on JC, is

Pﬂ=fku, %=_f%, j=l,2, M|2=k|az_kzal,

Mo =kod), My=ky0,, D=%+k,al+k231,
Ky=iky(9,;+ 95,), Ki=i(k;0,,—k,0n+2k;0,,+3,),
Ky=i(—ky0;,+k,05,,+2k,03,,+ 0,). (1.18)

The action on J_ is the same except that k, is replaced by — k, in each of
expressions (1.18). Moreover, it is straightforward to verify that these
operators are skew-Hermitian on ¥, and J(_ separately.

The induced operators S, T on ¥ are

SF(ky ky) =F(—k,k,), TF(k)=(fT (k):f(k}) (1.19)

Thus, 3, and J(_ are invariant under S but are interchanged by 7. In
view of this interchange property of 7, we will henceforth limit ourselves to
consideration of elements in the Hilbert space J(,, that is, the positive

ISBN-0-201-13503-5
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energy solutions

227

¥(x)=(47)"" f f_iexp(ik-x} 1K) du (k). (1.20)

The inner product on JC, is

o= [[ " F0)Z (k) du(k) (1.21)

and

{\I’,@}E(f,g>=4fff ¥(x) aﬂﬁ(x)ixlitl

.I'D‘:f

. f f O(x) 3y W(x) dx, dx,. (1.22)

..3.'[|=I"

Furthermore, if ¥ is given by (1.20), we have

fR)=kor =" [ f:w(x)exp( — ik-x)dx, dx, (1.23)

By employing arguments analogous to those in [66], we can show that

JC, is invariant under / and

If(k}=(2w)_]ff_m cos| 21k)' | fMdu()),  fEIC,, I*=E, (1.24)

where E 1s the identity operator on J(, . Clearly, I extends to a unitary
self-adjoint operator on J(, with eigenvalues =+ 1.
If {¥,(x)} is an ON basis for J,, then (in the sense of distributions)

% V(0¥ (x)=A, (x—x")=(1672)" 'ffexp[ ik (x'—x)]du(k) (1.25)

where the distribution A, has the explicit expression

r
dmi(2—r?) 12,
AL (x)=1 =2mi(:2—r>)~"\/2,

hz’ﬂ"(?‘:—' Il)—l,ﬂ:

-
4 r=(.rf+x§)'ﬂ, (1.26)
—fo’:f{r, f-_-“.l'.'ﬂ.

The computation of (1.26) is carried out in analogy with the corresponding
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result for four-dimensional space-time [32]. It follows immediately that
¥(x)=C(¥,A, (x'—x)) (1.27)

where the integration is carried out over x'.
It is well known that the representation of so0(3,2) on J(, induced by the
operators (1.18) exponentiates to a global irreducible unitary representa-

tion of a covering group %(3,2) of the identity component of SO (3,2)

[44]. The maximal connected compact subgroup of 3.-5(3,2) 1s SO (3)X
SO (2) where SO (3) is generated by T'y,, I';5, I'y; and SO (2) by I'ys. We will
determine the explicit action of this subgroup on J(, as well as the action

of several other interesting subgroups of SO (3,2).

The operators My, My,, M,, generate a subgroup of ﬁ(?}@) isomor-
phic to SO (2,1) (see section 4.3). The action of this subgroup on IC, is
determined by

exp(OM,, ) f(k)=f(k,cosf— k,sinb, k,sinf + k,cos#),
exp(aMy, ) f(k)=f(k,(a).k,), (1.28)

ki(a)=[e*(ki+ko)' —e~ K} | 2k + ko), FEI,.

(The result for M, follows easily from that for M,.)
The P, generate a translation subgroup of SO(3,2):

Exp( >a,P, )f(k) =exp(ia-k) f (k). (1.29)

Unitary operators of the form exp(Za,K,) are more difficult to com-
pute. In [60] it 1s shown that

exp(aky,) f(s)=—i(2ma) " f f ZE;{p[ i(so+15)/a]

X cos{a™"[2solo+ 51l +5,5) ]} f ) de(1),  (1.30)

1 * .(31"'!1)
exp(ak, ) f(s)= (8]al f f p[ :

si(h+l)—1 (s34 5)
a(sy+s9) 2L+ 1y)'*

fM)dp(l) (1.31)

X COSs
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for fEX,, and

exp[a(Ko+ K, )| f(s)=[4mia(sy—s;)] Iﬂfm

= oG

Kexp[ _:(EE_W)) ]f( W (0= 5) ,w)dw, (1.32)

2(s0—51)
The dilatation operator D generates the subgroup

exp(aD ) f(k)=exp(a/2)f(e“k). (1.33)

We can now easily exponentiate the compact generator I s=(FP,—
K,) /2. Indeed, the operators P,, D, and K, generate a SL(2, R) subgroup

of SO (3,2). From (1.17) in Chapter 2 it is easy to verify the relation
exp(20T ) =exp(tan(# ) P, ) exp( — K,sinf cosf )exp(—2DIncosd ),

and evaluating the right-hand side we find

exp(20T,) f(K)=i(2m) " csc(f) f f exp| — i (kg + Iy cotf]
x cos{csc(8)[2(kqlo+ KoLy + koly)]'/2) £ dul), (1.34)
8 nw.

Similarly, the operators P,,D,K, generate an SL(2,R) subgroup of
S0 (3,2) and we can verify the relation

exp(26T,,) =exp(tan(f) P, )exp(K,sinfcosf ) exp(—2DIn cosh ),

or
exp(260T,) f(k)=(87|sinf|) ™ 'exp(ik, {:otﬂ)ffexp(if, cotf)

ki (L+1)— 1 (ky+ k)
sinf (k,+ ko) /*(1,+ 1,)"/?

X COS

‘f (D apl), (1.35)

0=~ n.

The operators (1.35) together with the operators exp(8M,,), (1.28), de-
termine the action of the SO (3) subgroup.
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The known R-separable coordinate systems for (1.1) each correspond to
a two-dimensional (commuting) subspace of the space of second-order
symmetric elements in the enveloping algebra of so(3,2). If the commuting
operators form a basis for such a subspace, then the corresponding
separated solutions of (1.1) are characterized by the eigenvalue equations

S¥=\¥, j=1.2,

see [60-62]. Coordinate systems are considered equivalent if they can be

mapped into one another by transformations generated by SO (3,2), S, T,
and /. If a separable system corresponds to a subspace with basis S;=L?,

/=12, such that [L;,L,]=0 and L;Es0(3,2), we call these ccmrdmates
spm In this case one can dlag{malme the first-order operators L;. Such
systems are the best known and most tractable. More generally, if a s;fstem
corresponds to a subspace in which there exists a basis S,=L% S,
Leso(3,2), we call these coordinates semisplit. Here, we can diagonalize
the first-order operator L. If there exists no basis §,,S, such that §, is the
square of some L Eso(3,2), we call the coordinates nonsplit. Nonsplit
coordinates are the most intractable of all separable coordinates and
appear the least frequently in applications.

A detailed (but still incomplete) study of R-separable solutions of (1.1)
was carried out in [60-62]. Here we will be content with an examination of
some of the most important semisplit systems. A given L Eso(3,2) may
correspond to several (or to no) semisplit systems. Indeed, if ¥ satisfies
(1.1) and LY¥=i\¥, then since L is a symmetry of (1.1) we can introduce
new variables yg, v, y, such that L=29, +f(y) (where f may be zero) and
Y(y)=r(y)exp(irAyy)®, (y,.v,) where r is a fixed function satisfying o, Vi
fr=0. Then (1.1) reduces to a second-order partial differential equatmn for
®, in the two varniables y,, y,. The semisplit systems we will study each
correspond to systems such that the reduced equation separates. In particu-
lar, S;=L* and S, corresponds to a second-order symmetry of the reduced
equation.

In the next few sections we shall examine various possibilities for L that
lead to semisplit systems.

4.2 The Laplace Operator on the Sphere

The first systems we shall study correspond to diagonalization of the
operator I'ys, (1.8). On restriction of our unitary irreducible representation

of §O(3,2) on H, to the compact subgroup SO (3), this representation
decomposes into a direct sum of irreducible representations D, of SO (3),
dimD,=2/+1. We will determine a convenient basis for I, which
exhibits the decomposition. This is a basis of eigenfunctions of the com-
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4.1. The Equation ¥, —A,¥=0 231

muting operators I';s and ;3= M ,:

Lys f= M, Iy f=imf, —ilys=(ko/2)(— 0, =05 +1). (2.1)

With k, = kcos#, k,=ksin#l, k,=k it is easy to show that the ON basis of
eigenvectors is

P =[(1—m)! /m(I+ m)!] XKy LET 2K )e ™,
2.2)
A=l+3,1=0,1,..., m=ll=1...,— L

From this result and (1.14ii), we see that the { [} for fixed / form an
ON basis for the representation D, of SO (3). Furthermore, the restriction

of our representation of EE‘(S, 2) to SO(3) decomposes as 272 ,@ D,. The
known recurrence formulas for Laguerre polynomials imply

Lisf0=4[U=m+1)(I+m+1)] " f 0L [(1—m)(I+m)] 7 f50,
T fP=—[(I+m+2)(I+m+1)]" 2 4D+ [ (1= m)(I—m—1)]"? f5D
+ 1 [(+m)(I+m=1)]" (D= (= m+ 1)1 —m+2)] " f+D.

(2.3)

Using (2.1), (2.3) and taking commutators, we can compute the action of
[,z on this basis.

Note the close connection between the eigenvalue equation I'ys f=/Af
and the quantum Kepler problem in two-dimensional space:

Hg= g, H==1,.—09,+e/r;

r= (242", ([ [ghdedy<oo. 24)

The two eigenvalue equations can be identified provided k,=x(—p)'/?
ky=y(—p)'/% p=—e*/4X% The eigenvalue problems are defined on
Hilbert spaces with different inner products, but from the Virial theorem
[31, p. 51] we see that if the energy eigenvalue u belongs to the point
spectrum of A and g i1s a corresponding eigenvector, then g also has finite

norm in JC, . Conversely, if f is an eigenfunction of T, then ff|f|1dx¢:b <
oo and f corresponds to an energy eigenvalue p in the point spectrum of H.
Since the eigenvalues A of T'ys are A=/+3, /[=0,1,..., it follows that the
point eigenvalues of H are y,= —e?/4(/+ 3)*. Although this is a satisfying
explanation of the point spectrum of H, it sheds no light on the continuous
spectrum of H, since I'ys has only a point spectrum.
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Using the mapping (1.20) we can compute the corresponding ON basis
of positive energy solutions of (1.1):

1/2

exp{fm(u—%”

x [ expllixg— DKICKY, (kN LER@K)dK,  (25)
0

(I—m)!
dm(l+m)!

=]

X, =rcosa, X;=rsina.

In terms of the coordinates

Xp=siny /(coso—cosy),  x,=sinocosa/(cosc—cosy),
(2.6)

X, =sinosina /(coso—cosy),

variables R-separate in (1.1), (2.5) to give

T(x)=(— .E')m_l[(EHSU“C(}S:,D)/(-M-I—Z)]Iﬁ&};p[ —iy(/+ %)} Y™ (0,a),
(2.7)

where Y;” 1s a spherical harmonic. (We can always parametrize so coso —
cosy >0, see [63].) Indeed, on the solution space of (1.1) we find

siny

Tys=—0,+3 ;
9 ¥ 2 coso—cosy

T,,=1,, (2.8)

x

S0

Vi) =(coso —cuswulexp[ — £¢(!+ ;) } exp(ima) g(o),

and substituting into (1.1), we see that variables R-separate and g(o) is a
linear combination of P/"(coso), Q/"(coso). Evaluating the integral (2.5)
for special values of the parameters (e.g., 0 =0,7), we establish (2.7).

There 1s another model of our irreducible representation of SO (3,2) in
which the eigenfunctions of I',s and I'5; take an especially simple form.
The representation space is the Bargmann-Segal Hilbert space %, consist-
ing of all entire functions h(z,,z,) such that [11]

walhlzdﬁ(z){m, d&(z)=7"%exp[—(|z,|* +|2z,/))dx, dx,dv ,dy,, (2.9)

Z=2x+ by
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The inner product is

{fihy= j;rxfﬂ?dﬁzl

The carrier space for our representation is not %, but the subspace %;
consisting of all €%, such that h(—z,, —z,)=h(z,,z,). The functions

2.10
!=0:l:2:"*!m=3=---:_!1 { )
form an ON basis for % . Setting
I
- I
Lys=5(2,8,,+2,3,,+1), I"|5=§(z,zz— | ¥ 2.10)

' I
[,y = —é—(z. =200 1 LBt~ 23=23),

and comparing with expressions (2.3), we see that there is a new model of

our representation of %(3,2} in which the functions f)(k) can be
identified with the functions (2.10). The explicit unitary mapping U from
J* to %" that commutes with the group action is

Ui(@)= [ | Uk f®)duk),  fEIH, (2.12)

where

Ukz)=3 O @) =7 Pexp(—k+22,)

[.m
x cosh{ V2k [z,exp(fﬂ/E)—zzexp(fE?/Z)]}, (2.13)
ky=kcos#, k,=ksin#.

(Note that f(k)e I+ and f/(z)E %5 )

To understand more clearly the significance of the coordinates (2.6),
note that if ¥ is a solution of (I.I) such that T, ¥=i(/+3)¥, then
V(o,a,y)=(cosa—cosy)'/%exp] — i) (I+ 1)]®(0,a) where ® is an eigen-
function of the Laplace operator on the sphere ((2.20), Section 3.2) (6 =46, «
= ). Equation (2.20) separates in two coordinate systems, as we saw in
Section 3.3. The first system (spherical coordinates {o,«}) leads to the
R-separable solutions (2.7) of (1.1) that are characterized by diagonaliza-

tion of the operators

L. T%s I3

However, there is also a Lamé-type system which leads to R-separable



234 The Wave Equation 4.1.

solutions of (1.1) characterized by diagonalization of
2. LT+ Ty, @30
The overlaps between these bases are just those computed in Section 3.3.

4.3 Diagonalization of P, P,, and D

We next look for those coordinate systems permitting separation of
variables in (1.1) such that the corresponding basis functions ¥ are
eigenfunctions of Py:Py¥=iw¥. For such systems we have ¥(x)=
exXpliwxy)P(x,, x,) where

(8, + 35+ w?)®=0. (3.1)

Thus the equation for the eigenfunctions reduces to the Helmholtz equa-
tion. Now P, commutes with every element in the Euclidean Lie algebra
& (2) generated by P,, P,, M, and, as we know from Chapter 1, & (2) is the
symmetry algebra of (3.1). Furthermore, (3.1) separates in four coordinate
systems, each system corresponding to a symmetric second-order element
in the enveloping algebra of & (2) (see Table 1). The four associated
separable systems for (1.1) are characterized by diagonalization of the
operators in Table 18.

On H, the requirement P,f=iwf implies f(k)=8(k—w)g, (§) where
w>0, k;=kcos#, ky=ksinfl. The search for the functions g_ reduces to a
study of the Hilbert space L,(S,) on which E (2) acts via

These operators determine a unitary irreducible representation of E (2) on

L,(S5,). Once the eigenfunctions g, (#) of the second operator in 3-6 in
Table 18 have been determined, the corresponding separated solutions G
of (1.1) can be obtained from the relation

V. (x)=(47) : exp(fmxﬂ}fj exp| —iw(x,cosf+ x, sini?)] 8.,(8)do.

(3.2)
Table 18
3 PPy Cartesian
4 P M3 Polar
5 P§{M.P,) Parabolic cylinder
6 P§MEL+d*P? Elliptic

ISBN-0-201-13503-5
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Note that this model is essentially identical to the circle model studied in
Chapter 1. Thus, the spectral resolutions and overlaps computed there can
be immediately carried over to the wave equation.

Now we search for coordinate systems allowing separation of variables
in (1.1) such that the basis functions ¥ are eigenfunctions of P,: P,¥ =
—iwW. Here we have ¥(x)=exp(— iwx,)®(xy, x,) where

(30— 31y +w?)@=0. (3.3)

The operator P, commutes with the subalgebra & (1,1) generated by
Py, P, M,, and, indeed, &(1,1) is the symmetry algebra of (3.3). This
equation separates in ten coordinate systems associated with ten symmetric
second-order operators in the enveloping algebra of & (1,1) (see Table 2).
The pairs of commuting operators associated with the corresponding
separable solutions of (1.1) are listed in Table 19. The case 3’ is equivalent
to 3 in Table 18.

On I, the requirement P, f= —iwf implies f(k) =4 (k, —w) g, ({) where
— oo <w< 00,k =|k,|sinh{, ky=|k,|cosh{. The search for eigenfunctions
reduces to a study of the Hilbert space L,(R) on which E(1,1) acts via

Py=ilw|cosh§,  P,=—i|w|sinh§, My =20, (3.4)

These operators define a unitary irreducible representation of E(1,1) on
L,(R). After the eigenfunctions g, (£ of the second operator in 7-15
(Table 19) have been determined, the corresponding separable solutions
¥, of (1.1) follow from

¥, . (x)=(47)" "exp(— r'mxz)f_m exp| i|w|(xocoshé— x,sinh¢) | g,,.|(£) d&.
(3.5)

This is virtually identical to the L,(R) model discussed in Chapter 1, and
the spectral resolutions and overlaps derived there can be carried over to
the wave equation.

Next we look for coordinate systems yielding separation of variables in
(1.1) such that the basis functions ¥ are eigenfunctions of D: DV = —jp¥,

Table 19
3 PP, P, 11 P; MG — PoP,
7T P} M§ 12 P2ME+(Py+ P,
8 PEE*{M{II[:Pt} 13 P35, Mg —(Py+ P))*
9 PF{ My, Py) 14 P2 MZ+ P}
10 P§, (Mg, Py— P} +(Py+ P))? 15 P2 M¢ — P}
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In this case we have ‘If(x)=p""‘%¢(3) where

X=ps,  (020), sg—si—si=¢,

and e= x| or 0 depending on whether x-x >0, <0, or =0. It follows from
(1.14ii1) that

(M= Mg — M§, )®(s)=(r*+ 1 )(s). (3.6)
The operators M, (1.3), satisfy the commutation relations
[ M3 My, | = — My, | M5, M, | = My, | Mo, Mgy | =My, (3.7)

so they form a basis for the subalgebra s/(2, R)=s0(2, 1) (see Section 2.1).
Now D commutes with this subalgebra and in fact SO (2,1) is the symme-
try group of (3.6). The Casimir operator M3 — M2 — M2 commutes with
all elements of so(2,1). As shown in [139], the space of second-order
symmetry operators in the enveloping algebra of so(2,1), modulo the
Casimir operator, is decomposed into nine orbit types under the adjoint
action of SO (2,1). (The groups SO (2,1) and SL(2,R) are locally isomor-
phic.) Moreover, the reduced equation (3.6) separates in nine coordinate
systems, each system associated with a unique operator orbit. The coordi-
nate systems for e=1 can be found in [58, 104], in which case (3.6) is the
eigenvalue equation for the Laplace operator on the hyperboloid. Coordi-
nates for all cases e= * 1,0 are derived in [61]. Referring to the papers just
cited for details, we give here (Table 20) only the functional forms of the
separated solutions of (3.6), the names of the coordinate systems, and the
pairs of commuting operators associated with the corresponding separable
solutions of (1.1). System 7’ is equivalent to 7. al il

On J(, the requirement Df= —i»f implies f(k)=k " 2h (8) where
—oo<r<oo, ky=kcost, ky=ksinfl. The eigenfunction problem thus
reduces to a study of the Hilbert space L,(S,) on which SO(2,1) acts via

M,,= 3, Mﬂ,=—sinﬁaﬂ—(m+%)cmﬂ, 638)
3.8
My, =cosf ﬂﬂ—(fr+ %)Sinﬁ'.

These operators define a unitary irreducible representation of SO (2,1) that
is single valued and belongs to the principal series: /=—1+il»| (see
[10,115]). Once the eigenfunctions 4, (#) of the second operator in 16-23
(Table 20) have been determined, the corresponding separable solutions
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Table 20
Operators Coordinates Separated functions
16 D* Mg Spherical Exponential
Associated Legendre
17 D3 M Equidistant Exponential
Associated Legendre
7 D*(My— My, Horocyclic Exponential
Macdonald
18 D2 ME+a*Mé Elliptic Periodic Lamé
Periodic Lamé
19 D2 MG —a*Mi, Hyperbolic Lamé-Wangerin
O<a<l Lamé-Wangerin
20 D?*aMg —{M, My}, Semihyperbolic Lamé-Wangerin
0<a Lame—Wangerin
21 D% aM@+ M Elliptic-parabolic Associated Legendre
+MEH—{ MMy}, Associated Legendre
0<a
22 D? —aMg + Mg+ M, Hyperbolic-parabolic ~ Associated Legendre
—{ M3, My, }, Associated Legendre
0<a
23 D% { My, My) Semicircular-parabolic Bessel
— (M5, My, } Macdonald

¥ _ of (1.1) can be obtained from

X |sg— 5, cos8—s,sin8[*~zh (0)dh

*I'm(x)=p£u--%(4-}7]_11‘(%—.i:r)jl;hexp[iiw(%—f:r)/l}

(3.9)

where the plus sign occurs when s;— s,cosf/ —s,sinf/ >0 and the minus
sign occurs when this expression 15 <0. The spectral resolutions of the
operators 1623 and various overlaps computed in the L,(5,) model can be
found 1n [58]. (See also [54] for mixed-basis matrix elements corresponding
to subgroup systems.)

4.4 The Schrodinger and EPD Equations

Of special interest are the coordinate systems permitting separation of
variables in (1.1) such that the basis functions ¥ are eigenfunctions of
P,+ P,:(Py+ P)¥=iB V. For this case we have ¥(x)=e"“P®(t,x,) where
2s=xg+ x,,2t=x,—x,. The reduced equation for @ is the free-particle
Schrodinger equation

(iB3,+3, . )®(t,x,)=0.

(4.1)
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This equation admits as symmetries the operators

(}E—I=P2:« ﬂ{q:P:_Pm %ﬂzPﬂ'FPI! §f|=-2'-(Mm—Mu),
K°=-D-M,, H,=—L(K,+K,), (4.2)

which all commute with Py+ P, =%, As we showed in Section 2.1, these
operators form a basis for the six-dimensional Schrodinger algebra 6,, the
symmetry algebra of (4.1). (Note that the constant 8 can be set equal to 1
in (4.1) by a renormalization of ¢ and x,.) The pairs of commuting
operators associated with separable systems for (4.1) are listed in Table 21.
(Coordinates 3” are essentially equivalent to 3 in Table 18.) These results
follow from Table 6. Note that here the defining operators are first order,
rather than second order, in the enveloping algebra. This is because they
appear as first order in the explicit separation equations. All of the earlier
listed semisubgroup coordinate systems have been orthogonal with respect
to the Minkowski metric. However, the four systems in Table 21 are
nonorthogonal.

On IJ(, the requirement (Py+ P,)f=iBf implies fK)=ud (u—B)ls(v)
where B >0,u=ky—k,,v=k,. Thus, the search for the /g reduces to a
study of the Hilbert space L,(R) on which the Schrédinger group acts via

Ho=1iB, K_,=—iv, %,=§aﬁ, HO=—2—0d,

. ) (4.3)
W= %— K, = —53’3 n
As shown in Section 2.1, these operators determine an irreducible unitary
representation of the Schrodinger group on L,(R). (Indeed, for B=1 the
operators (1.24), Section 2.1, are unitary equivalent via the Fourier trans-
form to the operators given here, and for 87 1 our earlier results can easily
be modified to yield the global group action.) Once the eigenfunctions
lg,(v) of the second operators in 3”,24-26 (Table 21) have been de-
termined, the corresponding separable solutions ¥, of (1.1) can be com-
puted from

Vo (x)=(47) ! exp(fﬁ.f)f i exp[ —i(v%/B+ 0X;) ]!B# (v)dv. (4.4)

Table 21
3" Pok PPy Free particle
24 Py+ P, Py— P —1K,— 1K, Oscillator
25 Po+ P, Py— P +aM;—aMy,, Linear potential
a0
26 Py+ P, D+ My Repulsive oscillator
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Next we look for coordinate systems yielding separation of variables for
(1.1) such that the basis functions ¥ are eigenfunctions of M, :M,¥=
im¥. We have ¥(x)=e"™?®(x,,r) where x,=rcosg, xy,=rsing, and @
satisfies the Euler—Poisson—-Darboux (EPD) equation

(000—8,,—r~'8,+ m¥» 2)®=0 (4.5)
or
(Tas =T34 —T3)®=(T%+ )= —(m+1)(m—1)o (4.6)

from (1.14/v). The symmetry algebra of (4.5) is s/ (2,R), generated by the
operators I';s, Iy, I's,. and the symmetry group (for m integer) is SL(2,R):

[rqivrﬁl]=_r45s [r4;:F45]=_r5|' [F511F45]=r4|- (4.7)

In [63] it is shown that the EPD equation R-separates in exactly nine
coordinate systems corresponding to the nine SL(2,R) orbit types of
symmetric second-order operators in the enveloping algebra of s/(2,R),
modulo the Casimir operator I'2,—T2, —T2,. We list in Table 22 only the
operator characterizations of the R-separable solutions of (1.1) together
with the functional forms of the associated solutions of (4.5) (I'y3=M,, [,
=D, Lys=(Py—Ky)/2, Tyy=(Py+ K;)/2). The truly R-separable systems
are 1" and 29-3]1.

Table 22
Operators Separated functions
I W Exponential
Gegenbauer
4 .r%}, (F45 & F.“}] Expﬂnen tial
Bessel
16° T3:T% Exponential

Associated Legendre
27 T33,2T%+{T4s T, ) Associated Legendre
Assoclated Legendre
28 T%,2I%5+ (T4, Ty} Associated Legendre
Associated Legendre
29 T35,T5,+a{lTs,})  Lamé-Wangerin
Lamé-Wangerin

30" T3, T3s+alzZ;, Lamé-Wangerin
a>0 Lamé-Wangerin
31 T3,al3,+T1%, Lamé-Wangerin
a>1l Lame—Wangerin
32 T35 {Ts; Ty +Tys) Bessel
Bessel
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On J(, the requirement M, f=imf implies f(k)=e™’ (k) where m=
0, %1,...,k,=kcosl,k,= ksinf. The eigenfunction problem reduces to a
study of the Hilbert space L,[0, o] on which SL(2,R) acts via

r45=%(— B — k19, +m*k 2 +1),

r4,=‘—§€(a,,_,k+k—iak—mlk—1+s), T, =k, +1.

(4.8)

This action is irreducible and unitary equivalent to a single-valued repre-
sentation of SL(2,R), not SO(2,1), from the negative discrete series
D, 1, as can be seen from (4.6) and (2.2). (Compare with Section 2.3.)

Indeed, the eigenvalues of I'ys in this model are i(n+3),n=|m|,|m|+1,

|m|+2,.... This model of D,” has been studied by a number of authors
(e.g., [24, 96].)

Once the eigenfunctions j,,, (k) of the second operators in Table 22 have
been determined, the corresponding separable solutions V¥, of (1.1) can
be computed from

¥, (x)=exp[im(8—7/2)] j{; “exp(ixgh ), (kr) j, (K)dk.  (4.9)

More generally one can study the EPD equation (4.5) for any real m >0.
The separable coordinate systems and model (4.8) are unchanged but the

symmetry group becomes the universal covering group EE(Z,R) of
SL(2,R), as in Section 2.3. The mapping from L,[0, 0] to the solution
space of (4.5) is

D(xqr)=exp(— fmw/Z)Lmexp(fxﬂk)Jm (kr)f(k)dk=U[ f] (4.10)
and the associated inner product is
(20 @)=C o) =i [~ ®,(x0,) 3@, rIrdr
=i fu “D,(x0,7) 8, (g, F)rr, (4.11)

independent of x, Details concerning the spectral resolutions of the
operators that determine the separated solutions can be found in [63].

We have characterized the solutions ®,, of the EPD equation (4.5) as
solutions of the wave equation (1.1) that are eigenfunctions of L= —
iMy: LY, =m¥, ¥, =e™® (x,r). One can choose a basis (L} for the
complexification 50(3,2)°=s0(5,¢) of the conformal symmetry algebra
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such that [L, ;]= o, L; where a;=0, = 1. Indeed, the commutation relations

[L,P,*iP,]=%*(P xiP,), [ L, My £ iMy,] = *(My, = iM, ),
[ LK £iK,]|=*(K xiK,),

together with the fact that [L,L']=0 for L'= D,Pu, K, provides such a
basis. It follows from these relations that LY, is an eigenfunction of L
with eigenvalue m+a, =m,m= I; that is, Li(e™¥®,\ = exp[i(m+
.*:au:):;tzl]'Ii,,,,,_,_ﬂr Factoring :::u{ the ¢ dependence, we see that each symmetry
operator maps a solution of (4.5) for m to a solution for m + a;. Similarly,
the operators (1.12) induce mappings from one EPD equation tn another,
as do certain of the group symmetry operators.

We see that this series of recurrence formulas relating distinet EPD
equations to one another is a direct consequence of the conformal symme-
try of the wave equation, from which the EPD equation arises by partial
separation of variables. Weinstein [131, 132] has made use of two of these
recurrence relations in his study of boundary value problems for the EPD
equation. A complete group-theoretic discussion appears in [93], where it is
also shown that quadratic transformation formulas for the ,F, [36] are
related to the conformal symmetry of the wave equation.

We have mentioned all the semisplit systems for the wave equation with
the exception of some curious nonorthogonal systems which correspond to
diagonalization of the operator 3M,,+ 4 K,— P, and are discussed in
[60,62], as well as some highly singular solutions, discussed in [62], that
arise because diagonalization of a given first-order operator does not
uniquely determine the corresponding coordinate. Orthogonal nonsplit
coordinates are treated in [61].

4.5 The Wave Equation (0, —A,)¥(x)=0
In many respects the real wave equation in four-dimensional space-time
(Bpo— 0y — 05— 933 ) ¥(x) =0 (5.1)

is the most important equation in this book. In addition to the well-known
physical importance of (5.1), [12,107], it is a fact that virtually every
equation examined in the earlier chapters is either a special case of (5.1) or
is obtained from (5.1) by a partial separation of variables. Moreover,
whereas the three-space wave equation and its complexification are
associated with the generating functions for Gegenbauer functions and
polynomials, (5.1) is associated with generating functions for the general
Gaussian hypergeometric function and Jacobi polynomials.

Although (5.1) is presently undergoing intensive study from a group-the-
oretic viewpoint, the results at this writing are still fragmentary. We shall
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limit ourselves here to the indication of some general features of the
separation of variables problem for (5.1) and a brief discussion of relevant
published papers.

The 15-dimensional symmetry algebra so(4,2) of (5.1) was computed in
[14] and can be obtained in obvious analogy to that of (1.1). The symmetry
group, locally isomorphic to SO (4,2), is called the conformal group. It
contamns the homogeneous Lorentz group SO(3,1), the Poincaré group
E£(3,1), and the compact orthogonal group SO (4, R) as proper subgroups.
There 1s also an inversion symmetry analogous to /, (1.12). By utilizing the
Fourier transform one can construct a Hilbert space I, of positive energy
solutions on which there is defined a unitary irreducible representation of
the conformal group. This is carried out in analogy with (1.20) and details
are presented in [44, 66, 118].

One expects the R-separable solutions of (5.1) to be characterized as
simultaneous eigenfunctions of triplets of independent commuting opera-
tors that are at most second order in the enveloping algebra of so(4,2). We
will discuss a few of the special cases in which the details have been
worked out.

By restricting the symmetry algebra of (1.1) to the compact subalgebra
so(3) we were led to the Laplace operator on the sphere S, and obtained
two separable systems. Similarly, by restricting so(4,2) to the compact
subalgebra so(4), we obtain the Laplace operator on the unit sphere S in
four-dimensional space. This operator is studied in [65], where it is shown
that the eigenvalue equation separates in exactly six coordinate systems
associated with six commuting pairs of second-order symmetry operators
in the enveloping algebra of so(4). The relationship between so(4) and the
Schrodinger equation for the Kepler problem in three space variables is
also discussed.

Diagonalization of the symmetry operator P,=3, reduces (5.1) to the
Helmholtz equation, which separates in eleven coordinate systems. Di-
agonahzation of P;= 0, reduces (5.1) to the Klein-Gordon equation

(am_a”_ aﬂ-i-wz)‘i}:(]. (5i2)

In [61], 53 Minkowski-orthogonal separable systems for (5.2) were classi-
fied. Diagonalization of the dilatation symmetry 37 _,x_d, reduces (5.1) to
the eigenvalue equation for the Laplace operator on a hyperboloid in
four-dimensional space. The reduced equation admits the homogeneous
Lorentz group SO (3,1) as its symmetry group and separates in 34 coordi-
nate systems, each corresponding to a pair of second-order symmetric
operators in the enveloping algebra of so(3,1) [104,64]. Diagonalization of
Py+ Py=4d,+ d, reduces (5.1) to the free-particle Schrédinger equation

(iB9, + dyy+ 353 ) D=0, (5.3)
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which separates in 17 corrdinate systems. Similarly, diagonalization of the
symmetry M,,=x,0,— x;0, leads to a reduced EPD-like equation. Bate-
man has used the complexification of the s+educed equation obtained by
diagonalizing both M,, and M,,=x,d,+ x, 0, to derive generating func-
tions for Jacobi polynomials [13, p. 392], and Koornwinder [68,68a], has
used it in connection with his study of the addition theorem for Jacobi
polynomials. Henrici employed the same equation to derive generating
functions for products of Gegenbauer polynomials [48].

Although the systems above were obtained in complete analogy with our
treatment of (1.1), there are some novel types of nonsplit coordinates that
appear for (5.1). For example, diagonalization of P;+ P reduces (5.1) to
the two equations

(0go— 0y +@?)@=0,  (9,+ 033+ w?)O=0, (5.4)

where ¥ =®0. The possible separable systems for the reduced equations
can be read off from Tables 1 and 2.

The explicit connection between the functions ,F; and the wave equa-
tion will be discussed in the following chapter.

Exercises

. Compute the symmetry algebra of the wave equation (1.1).

2. Let yy=coso,y,=sinocosa,y,=sinosina where (y,0,a) are the R-
separable coordinates (2.6) for the wave equation (1.1). Show that substitu-
tion of ¥ =[cosa—cosy]'/2exp[— iy(I+ 3)]P(y,,y,y) into the wave equa-
tion leads to the reduced equation (T'j,+Tf;+I35;)@=—/(/+1)®, the
eigenvalue equation for the Laplace operator on the sphere yi+yi+yi=1.
Here I'y,,I';5, 1’55 are the usual angular momentum operators on the sphere.

3. Show that the space of second-order symmetry operators in the
enveloping algebra of so(2, 1), modulo the Casimir operator, is decomposed

into nine orbit types under the adjoint action of SO(2,1). (Hint: This
problem is equivalent to classifying the equivalence classes of 3 X3 real
symmetric matrices Q under the conjugacy transformations Q—A4‘QA,4 €
SO (2,1). For more details see [139].)

4. Show that the EPD equation (4.5) separates in the variables

x:-;]_‘-[(r+r)”z+(r—r)lﬂ], gy [(I_J_r)lfz_(f_r)lfz]’

ol e )

corresponding to the operators I35, {Ts;, [y, +T4s). The separated solutions
are products of Bessel functions [63].

5. As shown in the text, a function ®(x,,r) is a solution of the EPD
equation

(90— 3, —r "0, +m% ?)®=0
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if and only if ¥, =e™?® is a solution of the wave equation (1.1), where
x,;=rcosq,x,=rsing. Thus the solutions of the wave equation that are
eigenfunctions of M,,=0d, correspond to solutions of the EPD equation.
Use the expressions [iM,, * iMy, + My,]= F(* iM,, + My,) to derive dif-
ferential recurrence relations mapping solutions of the EPD equation for
m=m, to those for m=m,¥1, respectively. Similarly, the other Lie
symmetries of the wave equation yield mappings between EPD equations
(see [93]).




