Fiber Devices Drive the Optical Networking Revolution

Friday, December 8, 2000 - 10:10am - 11:00am
Vincent 570
Benjamin Eggleton (Alcatel-Lucent Technologies Bell Laboratories)
An emerging class of fiber waveguide structures is being used to increase the functionality of fiber devices, enabling new optical components critical to the performance of next generation lightwave networks. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional silica design and fall into two general categories: 1) fibers drawn with modified claddings that include non-silica regions throughout their length, examples include photonic crystal fibers; and 2) local modifications to the waveguide after fabrication, examples include fiber devices that incorporate thin film electrodes integrated into the cladding region for efficient thermal actuation. Design and optimization of these type of complex waveguide devices relies on an assortment of sophisticated and often clumsy modeling tools, including modeling of waveguide properties (e.g. photonic bandgap calculations), heat-flow dynamics in thermally actuated fiber devices, simulations of grating devices using coupled mode equations, and finally, simulations that model systems integration. This talk will review developments of a number of different technologies and discuss some of the key challenges associated with modeling and design. Emphasis will be placed on the underlying physics of the different device structures and systems performance.


A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler and T. A. Strasser, Electrically tunable efficient broad-band fiber filter, IEEE Photon. Technol. Lett. 11, 445-447 (1999).

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser and D. J. DiGiovanni, External refractive index insensitive air-clad long period fiber grating, Electronic Letters 35, 327-328 (1999).

B. J. Eggleton, J. A. Rogers, P. S. Westbrook and T. A. Strasser, Electrically tunable efficient dispersion compensation fiber Bragg grating device, IEEE Photon. Technol. Lett. 11, 854-856 (1999).

John A. Rogers, Benjamin J. Eggleton, Janet R. Pedrazzani, and Thomas A. Strasser, Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp, Appl. Phys. Lett. 74, 3131-3133 (1999).

B. J. Eggleton, T. N. Nielsen, J. A. Rogers, P. S. Westbrook, T. A. Strasser, P. B. Hansen, K. F. Dreyer Dispersion compensation in 20Gbit/s dynamic nonlinear lightwave systems using electrically tunable chirped fibre grating, Electronics Letters 35, 832-833 (1999)

B. J. Eggleton, C. M. de Sterke and R. E. Slusher, Optical pulse compression schemes that use nonlinear Bragg gratings, Fiber and Integrated Optics vol. 19, pp. 383-421 (2000).

T. N. Nielsen, B. J. Eggleton, J. A. Rogers, P. B. Westbrook, P. B. Hansen and T. A. Strasser, Dynamic post dispersion optimization at 40Gb/s using a tunable fiber Bragg grating, IEEE Photonics Technology Letters vol. 12, pp. 173-175 (2000).

J. A. Rogers, B. J. Eggleton, R. J. Jackman, G. R. Kowach, and T. A. Strasser, Dual On-Fiber Thin Film Heaters for Fiber Gratings with Independently Adjustable Chirp and Wavelength, Optics Letters, vol. 24, pp. 1328-1330, 1999.

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter and T. A. Strasser, Grating resonances in air-silica microstructured optical fibers, Optics Letters vol. 24, 1460-1462 (1999).

J. A. Rogers, B.J. Eggleton and P. Kuo, Temperature Stabilized Operation of Tunable Fiber Grating Devices That Use Distributed On-Fiber Thin Film Heaters, Electronic Letters 35, 2052-2053 (1999).

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, and T. A. Strasser, G. L. Burdge, Cladding mode loss in hybrid polymer-silica microstructured optical fiber gratings, IEEE Photonic Technology Letters 12, 495-497 (2000).

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, G. Burdge, S. Ramachandran, A. A. Abramov, T.N. Nielsen, G. R. Kowach, R. S. Windeler and T. A. Strasser, Tunable fiber grating devices utilizing integrated thin film heaters, OSA Trends in Optics and Photonics Series, Vol. 29, WDM components, 61-72 (1999).

J. A. Rogers, P. Kuo, A. Ahuja, B. J. Eggleton, R. J. Jackman, Characterization of heat flow in optical fiber devices that use integrated thin-film heaters, Applied Optics 39, 5109-5116 (2000).

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler and G. L. Burdge, Claddding-mode-resonances in air-silica microstructure optical fibers, Journal of Lightwave Technology 18, 1084-1100 (2000).

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen and B. Mikkelsen, Integrated per-channel dispersion compensating Bragg gratings, October issue of Journal of Lightwave Technology (2000).

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, K. Dreyer, Tunable dispersion compensation in a 160 Gb/s TDM system by a voltage controlled chirped fiber Bragg grating, IEEE Photonics Technology Letters vol. 12, pp. 1022-1024, (2000).

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, Experimental and scalar beam propagation analysis of an air-silica microstructure fiber, Optics Express vol. 7, 13-122 (2000).

A. K. Ahuja, P. Steinverzal, B. J. Eggleton and J. A. Rogers, Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters, Optics Communications vol. 184, 119-125 (2000).

J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, X. Liu, and C. Xu, Adiabatic coupling in tapered air-silica microstructured optical fibers, in press IEEE for January issue of Photonics Technology Letters (2001)