Mathematical Models for Insurance Fraud Detection

Friday, April 2, 2004 - 1:25pm - 3:00pm
Vincent 570
Richard Derrig (Opal Intelligent Solutions)
A discussion of some joint research with folks at the University of Texas on fraud detection via a binary classification of (insurance claim) characteristic vectors in n-space. This result fits into a data mining slot known as unsupervised learning, i.e. there are no known assignments to the two classes (fraud/ no fraud) but rather known or assumed responses (vector components) that are monotone in a latent variable (fraud/ no fraud). The origins of the technique are in educational testing (marketing) where the feature vectors are scored answers to questions and the latent variable is pass/fail (buy/no buy). Comparisons with other common modelling results for fraud and an application to structural changes in databases will be covered. No prior knowledge of insurance will be assumed or needed.