Toward in-silico Design of Polycrystalline Materials

Thursday, September 13, 2012 - 11:30am - 12:00pm
Keller 3-180
Shlomo Ta'asan (Carnegie-Mellon University)
Grand challenges in materials science include the accelerated design of materials with exceptional properties for use in applications that span from microelectronics to large structures used in airplanes. Examples of desired properties include high-strength and high-formability, resistance to creep, fatigue, radiation, and high-thermal loading. The design of materials that meet such properties requires integration of experiment, modeling, simulation and analysis across multiple scales: from DFT to macroscopic levels. Moreover, it requires the assembling of teams with expertise spanning multiple engineering, physics and mathematical fields. We discuss an example of such integration that may result in enabling technologies for in-silico design of polycrystalline materials. Infrastructure in terms human resources, hardware, software and experimentation is needed to meet the challenge.