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1 Abstract

In this report, we study an exotic option whose price is dependent on the correlation between different
underlyings. We begin our analysis with a rather simple initial model with static pairwise correlation and
common volatility. Then we propose a model in which correlation has a term structure. Afterwards we develop
a single factor model for the underlyings, with idiosyncratic noise. We also suggest a Markovian correlation
model and a stochastic correlation model in this setting. We prove some analytic results, calibrate desired
parameters from historical data, simulate the payoff function and compute the expected payoff under different
models.

We find that the option price is always higher with dynamic correlations than under the assumption of static
correlation.

2 Introduction

Since the groundbreaking work of Black, Scholes, and Merton (1973), mathematical modeling of financial
phenomena has become both more coherent and more important. The field is not without appropriate
criticisms, however. The interested reader should look at Mandelbrot and Taleb for some unique, if not
constructive, perspectives on the failings of current models.

The purpose of the current work is to study an exotic option in which the correlation between individual
underlyings plays an important role. We proceed as follows. First, we define the payoff of the specific option
under inspection, and then proceed to derive results using Black-Scholes dynamics for all underlyings. Our
initial model is rather simple, and uses a static pairwise correlation and constant volatility for all assets.

Like most priced parameters in finance, correlation in financial data is time varying. In light of this fact,
we suggest a model for stochastic correlation that captures some stylized facts observed in markets. Our
first dynamic correlation model is determined by a stochastic differential equation with mean reversion and
a term ensuring that we obtain correlations in the appropriate bounds. We obtain an asymptotic density
result for our proposed correlation dynamics, and use this density to calibrate model parameters to historical
data using conditional maximum likelihood.

We proceed to construct a single factor Black-Scholes-like stochastic differential equation with systematic and
idiosyncratic noise, and produce analytical results analagous to those found in our initial simplistic model.
This model is then expanded to include a Markovian model of correlation with states calibrated to historical
data. We also incorporate the stochastic correlation model into this single factor setting.

The models suggested in this paper are then used in simulations. The results show that dispersion is signifi-
cantly impacted by introducing dynamic correlation.

2.1 Option definition and Initial Study

The option under study has payoff given by

max

(
1
N

N∑
i=1

|Ri − µ| −K, 0

)

where N is the number of underlying stocks, Ri is the compounded return of stock i, and µ is the average of

R′is, i.e. µ =
1
N

N∑
i=1

Ri.
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Intuition leads us to believe that this option should be long volatility, σ, and short correlation, ρ. This is a
model-free statement. That is, this should be evidenced by any model we propose to price this option.

3 The Initial Model

We start by building a stochastic model of returns with easily identifiable parameters. We suppose all pairwise
correlations between stocks are the same; namely, ρ. Further, we assume all of the stocks have the same
volatility σ. In addition, we assume both ρ and σ are constants. As stated above, We will add dynamics to
ρ in later analysis. The current model under consideration is

dSit
Sit

= µdt+ σdW i
t ,

E(dW i
t dW

j
t ) = ρdt.

Note that Rit, the compound return, is defined as Rit =
Sit
Si0
− 1, but that the payoff function is unchanged if

we define Rit to be Rit =
Sit
Si0

. We will use this latter definition in this report.

We clearly have that Rit has the same dynamics as Sit :

dRit
Rit

= µdt+ σdW i
t .

Rit therefore has a lognormal distribution, i.e.,

lnRit ∼ N(µ− 1
2
σ2, σ).

We define D to be the dispersion portion of the option payoff,

D :=
1
N

∑
i

∣∣∣∣∣Rit − 1
N

∑
k

Rkt

∣∣∣∣∣ .
Our focus is primarily on D in the current study. It is difficult to find the distribution, or even the expectation,
of the absolute value of a linear combination of a sequence of lognormal distributions. However if we use
the first two terms of a Taylor expansion of natural log function around x = 1, i.e., lnx ∼ x− 1, we get the
following:

Rit ∼ lnRit + 1,

and can estimate the expectation of the payoff as

E

(∣∣∣∣∣Rit − 1
N

∑
k

Rkt

∣∣∣∣∣
)
∼ E

(∣∣∣∣∣lnRit + 1− 1
N

∑
k

(lnRkt + 1)

∣∣∣∣∣
)

= E

(∣∣∣∣∣lnRit − 1
N

∑
k

lnRkt

∣∣∣∣∣
)
.
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While {lnRit}Ni=1 is multi-variate normally distributed, with the expectation µ−σ2/2 for each i, and covariance
matrix

σ2t


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
...

...
ρ ρ · · · 1

 ,

lnRit − 1
N

∑
k(lnRkt ) is a one dimensional normal distribution, i.e.,

lnRit −
1
N

∑
k

(lnRkt ) ∼ (0,
√

(1− 1/N)t σ
√

1− ρ)

the expectation of the absolute value of the above is

√
2
π

√
(1− 1/N)t σ

√
1− ρ.

Therefore the expectation of the payoff can be calculated

E(D) ∼ 1
N

∑
i

E(| lnRit −
1
N

∑
k

(lnRkt )|) =

√
2
π

√
(1− 1/N)t σ

√
1− ρ

This agrees with the intuition that the payoff is long volatility and short correlation. We also see that under
the presumed dynamics, we are long both the number of names and time.

3.1 Calibration of σ and ρ

Given the m ×m historical covariance matrix Σ, we seek a single σ and ρ for calibration. We choose these
variables as the solution to the minimization problem,

min
σ, ρ

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣Σ− σ
2


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
subject to

− 1
m− 1

< ρ < 1

where the norm taken is the Frobenius norm. The bounds on ρ guarantee that the calibrated covariance
matrix is positive definite.

3.2 Stochastic Correlation

By examining historical financial data, it is evident that it is necessary to incorporate stochastic correlation.
In light of these results, we suggest the following SDE for correlation:

dρt = k(ρ̄t − ρt)dt+ b
√

(1− ρt)(1 + (N − 1)ρt)dZt.
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The k(ρ̄t − ρt)dt term makes the dynamic mean-reverting, with mean ρ̄, and mean reversion rate, k. To
ensure that ρ always stays within the appropriate bounds, we introduce the factor

√
(1− ρt)(1 + (N − 1)ρt).

Additionally, we assume that the systematic noise factor, dZ is the same as that affecting returns. This is
not only a matter of convenience. Research shows that correlations in a market upswing tend to be lower
than those found in a bear market.

From these dynamics, we may obtain an asymptotic transition density for ρ. This allows us to formulate and
solve a maximum likelihood estimation problem with the appropriate density.

3.2.1 Transition Density for Stochastic Correlation

Although the above SDE for stochastic correlation cannot be solved explicitly, it is possible to find the
asymptotic transition distribution of ρt. That is, we may find the conditional distribution of ρt given ρt−1

as t→∞. The transition density of ρt, p(t, ρ), is defined as

p(t, ρ)dρ = Pr(ρ < ρt < ρ+ dρ|ρs), t > s

It can be shown that p(t, ρ) satisfies the following Kolmogorov forward (Fokker-Planck) equation:

∂p

∂t
=

1
2
b2(1− ρ2)

∂2p

∂ρ2
− [kρ̄− (k − 2b2)]

∂p

∂ρ
+ (k − b2)p, t > s

p(s, ρ) = δ(ρ− ρs)

Two structural conditions are imposed. First, p is required to be a density

∫ 1

−1

p(t, ρ)dρ = 1

Moreover, we postulate that p preserves the expectation

lim
t→∞

∫ 1

−1

ρ p(t, ρ)dρ = ρ̄

We assume the correlation time series is stationary, and hence it is sufficient to derive the stationary solution
p(ρ) = limt→∞ p(t, ρ) to the steady state equation which fulfills the above two structural conditions:

1
2
b2(1− ρ2)

d2p

dρ2
− [kρ̄− (k − 2b2)]

dp

dρ
+ (k − b2)p = 0

First, we examine the simplified case ρ̄ = 0:

1
2
b2(1− ρ2)

d2p

dρ2
+ (k − 2b2)

dp

dρ
+ (k − b2)p = 0

The general solution for this ODE is:

p(x) = (1− ρ)
k−b2

b2 [c1(1 + ρ)
k−b2

b2 + c2 2F1(−k − b
2

b2
,
k

b2
;−k − 2b2

b2
;

1
2

(1 + ρ))]
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where c1, c2 are constants and 2F1(a, b; c; z) is the hypergeometric function

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

with αn = α(α+ 1)...(α+ n− 1)

Since
∫ 1

−1
ρ(1− ρ)

k−b2

b2 (1 + ρ)
k−b2

b2 dρ = 0 = ρ̄, we can choose c2 = 0. Then we choose

c1 =
1∫ 1

−1
(1− ρ)

k−b2
b2 (1 + ρ)

k−b2
b2 dρ

=
Γ( kb2 + 1

2 )
√
π Γ( kb2 )

so that
∫ 1

−1
p(ρ)dρ = 1

Next, we investigate the more general stationary Fokker-Plank equation

1
2
b2(1− ρ2)

d2p

dρ2
− [kρ̄− (k − 2b2)]

dp

dρ
+ (k − b2)p = 0.

The general solution is

p(ρ) = (1− ρ)
k(1−ρ̄)−b2

b2 [c1(1 + ρ)
k(1+ρ̄)−b2

b2 + c2 2F1(−k(1 + ρ̄)− b2

b2
,
k(1− ρ̄)

b2
;−k(1 + ρ̄)− 2b2

b2
;

1
2

(1 + ρ))].

For ρ̄ =0, the solution should agree with the simplified one, thus we have c2 = 0 and

c1 =
1∫ 1

−1
(1− ρ)

k(1−ρ̄)−b2
b2 (1 + ρ)

k(1+ρ̄)−b2
b2 dρ

=
Γ(k(1−ρ̄)

b2 + 1
2 )

√
π Γ(k(1−ρ̄)

b2 )2F1(−kρ̄b2 ,−
kρ̄
b2 + 1

2 ; k(1−ρ̄)
b2 + 1

2 ; 1)
.

Therefore, the asymptotic transition density is

p(ρ) =
Γ(k(1−ρ̄)

b2 + 1
2 )

√
π Γ(k(1−ρ̄)

b2 )2F1(−kρ̄b2 ,−
kρ̄
b2 + 1

2 ; k(1−ρ̄)
b2 + 1

2 ; 1)
(1− ρ)

k(1−ρ̄)−b2

b2 (1 + ρ)
k(1+ρ̄)−b2

b2 .

With stationary correlation time series, the density of ρt conditional on ρs is

p(ρt|ρs) =
Γ(k(1−ρ̄)

b2 + 1
2 )

√
π Γ(k(1−ρ̄)

b2 )2F1(−kρ̄b2 ,−
kρ̄
b2 + 1

2 ; k(1−ρ̄)
b2 + 1

2 ; 1)
(1− ρt)

k(1−ρ̄)−b2

b2 (1 + ρt)
k(1+ρ̄)−b2

b2 .

In addition, ρt1 |ρt0 , ρt2 |ρt1 , ..., ρtm |ρtm−1 are independent.

Thus, the conditional likelihood function is
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L(k, b, ρ̄) =
m∏
i=1

p(ρti |ρi−1)

Given a set of data, we seek to maximize the above likelihood function. The solutions, k, b, ρ̄, to this
maximization problem are then used as parameter estimates for the stochastic differential equation in ρ.
This yields a calibrated simulation for ρ.

4 Single Factor Model

Although the initial model is easy to work with and gives easily identifiable results which verify our intuition
on the long σ and short ρ positions, it has deficiencies. Specifically, we have no reason to assume that all
stocks have the same volatility or that they might share some common pairwise correlation.

Here we introduce a more sophisticated model. We suggest a single factor model in which we introduce
a market factor Z and assume that all stocks are correlated to each other via correlation to the market.
Further, we assume that each stock has an idiosyncratic noise component, W i

t , with Zt,W i
t all independent.

Mathematically, we have

dSit
Sit

= µidt+ σi(ρidZt +
√

1− ρ2
i dW

i
t ), (1)

where ρi is the correlation between stock i and the market factor. For a specific reference, we may use the
S&P 500 index to specify the market factor Z.

We use the same technique as we used in the initial model to estimate the expectation of the payoff in this
single-factor model; viz.,

{lnRit}Ni=1 is multi-variate normally distributed, with the expectation being {µi − σ2
i /2}Ni=1 , and covariance

matrix

t


σ2

1 ρ1ρ2σ1σ2 · · · ρ1ρNσ1σN
ρ2ρ1σ2σ1 σ2

2 · · · ρ2ρNσ2σN
...

...
. . .

...
ρNρ1σNσ1 ρNρ2σNσ2 · · · σ2

N

 .

We also have that lnRit − 1
N

∑
k(lnRkt ) is a one dimensional normal distribution, i.e.,

lnRit −
1
N

∑
k

(lnRkt ) ∼ (mi,
√
βit),

where
mi = µi −

1
2
σ2
i −

1
N

∑
k

(µk −
1
2
σ2
k)

and
βi = (1− 2

N
+

2
N
ρ2
i )σ

2
i −

2
N
ρiσi~ρ · ~σ +

1
N2

(~σ · ~σ + (~ρ · ~σ)2 +
∑
k

ρ2
kσ

2
k).
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It follows that

E

(∣∣∣∣∣lnRit − 1
N

∑
k

(lnRkt )

∣∣∣∣∣
)

= mi(2F(
mi√
βit

)− 1) +

√
2βit
π

e
− m2

i
2βit ∼

√
2βit
π

+
√

1
2πβit

m2
i

where F is the c.d.f of a standard normal distribution.

The expected payoff is therefore

E(D) ∼ 1
N

∑
i

[
mi(2F(

mi√
βit

)− 1) +

√
2βit
π

e
− m2

i
2βit

]
∼ 1
N

∑
i

(√
2βit
π

+
√

1
2πβit

m2
i

)
There are several facts we can see from the above results:
First, the payoff is long

√
βi,

βi = σ2
i (1− 1

Nσ2
i

· (sum of i-th row of Σ) +
1

N2σ2
i

· (sum of all elements in Σ))

while
1

Nσ2
i

· (sum of i-th row of Σ)− 1
N2σ2

i

· (sum of all elements inΣ)

could be considered as a weighted correlation, βi ∼ σ2
i (1−ρ̄) for some ρ̄, and the option is long

√
β ∼ σ

√
1− ρ̄,

which matches our previous model.

Second, we could see from the second term in the asymptotic behavior of the expected payoff that the option
is also long m2

i , the dispersion of the variance.

4.1 Single Factor Model with Markovian Correlation

4.1.1 Assumption

Here we provide an alternate method to describe how ρit behaves with respect to time t. In this analysis, we
consider the change of ρit as a Markovian variable. We have that ρit satisfies the following equation:

∆ρit = ∆ρi(St) = ∆ρij , St = j, (2)

∆ρit =
ρit

ρit−∆t

− 1, (3)

Xt = 1, 2, . . . , J. (4)

Where Xt is a J-state Markovian variable and has the following probability distribution:

P{St = k|St−∆t = j} = pjk. (5)

P = [pjk] is a J × J transition matrix of the change of correlation ρ and pjk denotes the probability of state
S changing from j to k.

4.1.2 Algorithm for Simulation under These Dynamics

We do not seek solutions of the SDE involving S and dynamic ρ in this analysis. Instead, we consider the
case that all correlations ρit in (1) are independent of time t, and obtain the familiar analytic solution:

Si(T ) = Si(0)exp
{(

µi − 1
2
σi

2
)
T + σi

(
ρiZ(T ) +

√
1− ρi2W i(T )

)}
(6)
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We use this solution to incorporate dynamic correlation, and solve problems involving these dynamic quan-
tities numerically. Our updating scheme is illustrated below.
From time t to t+ ∆t:
[1]Get a random number StateDet which satisfies the uniform distribution U(0, 1).
[2]According to StateDet and the transition probability matrix P (see 5) of the change of ρ, we can replace
the state St by the new value St+∆t.
[3]From St+∆t, we determine the new value of ∆ρit+∆t, then obtain ρit+∆t.
[4]Then by using (6) to get the new stock price:

Si(t+ ∆t) = Si(t)exp
{(

µi − 1
2
σi

2
)

∆t+ σi
(
ρit+∆tZ(t+ ∆t) +

√
1− ρit+∆t

2
W i(t+ ∆t)

)}
.

4.2 Single Factor Model with Stochastic Correlation

Here we use the same dynamic of ρ as we used in the initial model, i.e.,

dρit = ki(ρ̄i − ρit)dt+ bi
√

1− ρ2
i dZt.

With the assumed dynamic of the correlations, we try to derive a PDE to price options involving stocks and
the index, which we assume follows a regular Black Scholes dynamic

dI = µIdt+ σIIdZt.

We start by considering an option whose underlying assets are the index I and a stock R,

dR

R
= µdt+ σρdZt + σ

√
1− ρ2dWt

dρ = k(ρ̄− ρ)dt+ b
√

1− ρ2dZt

Since the random component of I is common to both ρ and I, we find that

dρ =
[
k(ρ̄− ρ)− µ

σI
b
√

1− ρ2

]
dt+

b
√

1− ρ2

σII
dI (7)

We see from the above that ρ is in fact a deterministic function of t and I, and the above equation is essentially
a first-order PDE that can be solved by using the method of characteristic curves.

Next, suppose f is a function of t, I and R. Then we have the following dynamic

df =
[
∂f

∂t
+ µI

∂f

∂I
+ µR

∂f

∂R
+

1
2
σ2
II

2 ∂
2f

∂I2
+

1
2
σ2R2 ∂

2f

∂R2
+ ρσIσIR

∂2f

∂I∂R

]
dt

+
(
σII

∂f

∂I
+ σρR

∂f

∂R

)
dZt

+ σ
√

1− ρ2R
∂f

∂R
dWt

Using standard financial reasoning, we may obtain a risk free portfolio by being
long one option,
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short
∂f

∂R
of the stock, and

short
∂f

∂I
of the index.

We note that if we assume that ∂f
∂ρ is nonzero, we still obtain similar results, but must refer to the total

derivative df
dI rather than the standard partial derivative. In particular, in this case one obtains a hedge in

the index of
∂f

∂I
+
∂ρ

∂I

∂f

∂ρ
=
∂f

∂I
+
b
√

1− ρ2

σII

∂f

∂ρ
,

but this is exactly the total derivative of f with respect to I. This result is reassuring, as we are only witness
to the total derivative in practice.

Again, by standard financial reasoning, we obtain the following PDE

∂f

∂t
+

1
2
σ2
II

2 ∂
2f

∂I2
+ ρσIσIR

∂2f

∂I∂R
+

1
2
σ2R2 ∂

2f

∂R2
+ rR

∂f

∂R
+ rI

∂f

∂I
− rf = 0

with ρ an explicit (in the case that we can get a closed-form solution of the 1st order PDE (1)) or an implicit
function of t and I.

The above equation is in fact a Black-Schole’s equation with two underlyings which are correlated by ρ. It
can be used to price options involving indicies and stocks.

5 Simulation Results

In this section, we provide simulation results that we compare with historical information used in this
study.We will demonstrate our results in the following way:

1. Calibration from historial data.

2. Payoff distribution, Expected Payoff and Discounted Price for different models.

3. Comparisons between historical data and simulation data.

We set N = 28, days = 252, T = 1, µ = 0.05, σ = 0.2 and trials = 1000 in all of the simulations. Where
N is the total number of stocks; days is the number of days for simulation per year; T is the period of time
(years) and trials is the number of repeated experiments .

5.1 Calibration from historical data

Using the analysis shown in previous sections, we obtain the calibrations shown in Figure 1 under the single
factor model (SFM) with stochastic correlation. We also implement a the Markovian model suggested above
with number of states, J = 7. These state values are calibrated to historical data. We find that the mean
value of b for all stocks in our analysis during one year under SFM with stochastic is b = −0.15854 and
the mean value of k for all stocks is k = −0.08249. These data are used as the inputs of our numerical
simulations.

10



Figure 1: The calibration from the historical data under SFM with stochastic correlation ρ.
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B-S model Single factor model
constant ρ dynamical ρ Markovian ρ stochastic ρ

E(D) 0.1653 NaN 0.1657 0.1660
DiscountedPrice 0.1573 NaN 0.1576 0.1578

Table 1: The expected payoff for different models.Parameters: B-S model: ρconst = 5.6E − 5

5.2 Payoff Distribution and Expected Payoff

Using the calibrated values suggested above, we compute the payoff distribution and expected payoff of the
dispersion portion of the option presented. We use an initial value of correlation between the stocks and the
Market of ρ0 = ρ̄, the trailing mean correlation just prior to the beginning of the simulation.

1. Payoff distribution graphs for different models.

Remark:
The payoff distribution of SFM with Markov ρ is very similar to that of SFM with stochastic ρ.
The three models incorporating dynamic correlation have distribution graphs with a fat tail.

2. Expected payoff and Discounted Price.
Remark:

We did not obtain results for the B-S Model using dynamic correlation. This is a result of the time
constraint for this report.
The constant ρconst is chosen as the mean value of ρ of SFM with Markovian correlation for all stocks
during one year. Since it is very small, the difference of the three models in Table 1 is not large.
From the data displayed in Table 1, we find that the expected payoff and discounted price of the B-S
model is always less than those of the single factor models. We suggest that this is because the basket
option prices react asymmetrically to positive and negative correlations, where a change in negative
correlations has a higher impact on the option price than a change in positive correlations of the same
magnitude.(see [4]). And furthermore, the expected payoff increase when correlations decrease.

3. The simulation results compared with the mathematical results.
Recall the first order approximation of the expected payoff of the toy model with constant correlation,
the formula is:

E(D) ≈
√

2
π
σ
√

(1− 1/N)T
√

1− ρ.

Our simulation results (see Figure 3) demonstrate the correctness of mathematical analysis, and the
relative error between the simulation ones and the first order approximation is about 0.05.

5.3 Comparisons between historical data and simulation data

In this subsection, we want to exhibit the difference between the simulation results and historical data. And
what we are interested in is whether the simulation results keep the distribution of the historical data.

1. Log(Return)
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Figure 2: The payoff distribution of (a) Black-Scholes model with constant ρ;(b) Black-Scholes model with
dynamical ρ (3)SFM with Markovian ρ;(d) SFM with stochastic ρ .
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Figure 3: The relationship between the Expected payoff and parameters (a) σ, (b) ρ and (c)N under the Toy
model with constant ρ.
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Figure 4: The path of ρ of stock 4 under (a) SFM with Markov ρ, (b) SFM with stochastic ρ and (c) historical
ρ.
Remark: From Figure 4, we find that the path of ρ under the SFM with Markovian correlation has a
very similar shape with that of the historical graph, which shows the advantage of simulating correlation by
Markovian variables.
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Figure 5: The stocks’ prices of stock 4 under (a)SFM with Markov ρ, (b)SFM with stochastic ρ and
(c)historical ρ.
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Figure 6: The distribution of log returns of stock 4 under (a) SFM with Markov ρ, (b) SFM with stochastic
ρ and (c) historical.
Remark: The distributions of these three looks similar to each other. All of them have a thick tail on the
distribution, especially the graphs of SFM with stochastic ρ and historical ρ.
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6 Future Work

Using the correlated Black-Scholes PDE exhibited in the final analysis, we have derived a method to obtain
an implied correlation between any two underlyings that we assume follow a geometric Brownian motion.
Our intention is to reinterpret the volatility smile in this context. That is, we seek to assume that correlation
to the market factor provides information regarding market sentiment. And, since we observe stationary
dynamics in correlation, there is some mild hope that these results will have lasting duration. In addition,
these implied correlations may be used to help price options. In particular, we may gain pricing insight for
the dispersion option just presented.
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