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Polynomials with (only) real zeros

Combinatorics, algebra, geometry, analysis, ...

Surveys by: Stanley ('86), Brenti ('94), Brandén (2014+).



Combinatorial significance

Consider a generating polynomial

n
>
k=0

if it has only real zeros then the coefficients are known to be

strongly log-concave: af a1 _air
00 7 1) )

log-concave: @@ > a1

unimodal: @< <am=--=an (fa.>0)

Other, geometrically inspired notions: y-nonnegativity.
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Eulerian polynomials

as generating polynomials

For a permutation m =7ty ... 71, in Sy, let
des(m) = [{i | 7ty > miq 1}l

denote the number of descents in .

Definition
The Eulerian polynomial is

n—1
Gn(x) = xdes(m) — m x*,
" ﬂéﬂ 1;) <k>

where () = [t € S,/ des(n) = k}.



Eulerian numbers: ()

Euler’s triangle

k:
0 1 2 3 4 5
n: 1] 1
2 1 1
3] 1 4 1
411 11 11 1
5|1 26 66 26 1
6|1 57 302 302 57 1




Eulerian numbers: ()

Euler’s triangle

k:
0 1 2 3 4 5
n: 1] 1
2|1 1
3|1 4 1
411 11 11 1
5|1 26 66 26 1
6| 1 57 302 302 57 1
» Sq(x) =1,
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Theorem (Frobenius)
Sn(x) has only (negative and simple) real zeros.
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The zeros of S,,(x)

Theorem (Frobenius)
Sn(x) has only (negative and simple) real zeros.

Corollary
For alln > 1, the Eulerian numbers

G (1))

form a (strongly) log-concave, and hence unimodal sequence.
Most proofs of the theorem rely on the recurrence:

Cnr1(x) = (1 +1x)Cnlx) +x(1 —x) S (x).
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Theorem (Obreschkoff)

» f(x) and g(x) have interlacing zeros
» Af + ug has only real zeros for any A, € R.

Problem with this method:
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Interlacing polynomials

Theorem (Obreschkoff)

» f(x) and g(x) have interlacing zeros
» Af + ug has only real zeros for any A, € R.

Problem with this method: Does not scale.

Dni2(x) = (n(145x)+4x)Dy 1 (x) +4x(1 —x)Df (%)
+((1=x)2=n(1+3x)2 —4n(n—1)x(1 +2x))Dn (x)
—(4nx(1—x)(143x) + 4x(1 —x)2)D4 (x) —4x2(1 —x)°D¥ (x)
+(2n(n—1)x(3+2x+3x%) +4n(n —1)(n—2)x2(1 +x)) Dy _1 (x)
+(2nx(1 —x)2(B+x) +8n(n—1)x2(1 —x)(1 +x))D ) _7(x)

+4anx?(1 —x)2(1 +x)DY _; (x).
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Compatible polynomials

Definition
The polynomials f{(x),...,fm(x) over R are compatible, if all
their conic combinations, i.e., the polynomials

m
D cifi(x) forall cp,...,c;m >0
i=1

have only real zeros.



Compatible polynomials

Definition
The polynomials f{(x),...,fm(x) over R are compatible, if all
their conic combinations, i.e., the polynomials

m
D cifi(x) forall cp,...,c;m >0
i=1

have only real zeros.
Remark (Chudnovsky—Seymour)

» f1(x),...,fm(x) are compatible if and only if
» f1(x),...,fm(x) have a common interleaver g(x).



Compatible polynomials

Definition
The polynomials f1(x), ..., fim(x) are pairwise compatible if

fi(x) and f;j(x) are compatible

forall1 <i<j<<m.



Compatible polynomials

Definition
The polynomials f1(x), ..., fim(x) are pairwise compatible if
fi(x) and f;j(x) are compatible

forall1 <i<j<<m.

Lemma (Chudnovsky—Seymour)

The polynomials f1(x), ..., fm(x) are compatible if and only if
they are pairwise compatible.



Advantage of compatible polynomials

» Can handle nonnegative sum of many polynomials.
» Enough to prove pairwise compatibility.
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Inversion sequences

an alternative way to represent &,

Definition
The inversion sequence of a permutation T =7ty - - - 71, is an
n-tuple
€= (61!'-'Jen)a
where

eg={ie{1,2,...,i— 1} m >m}|

counts the number of inversions “ending” in the jth position.



Inversion sequences

an alternative way to represent &,

Definition
The inversion sequence of a permutation T =7ty - - - 71, is an
n-tuple
€= (61!'-'Jen)a
where

eg={ie{1,2,....i—1}|m>m}
counts the number of inversions “ending” in the jth position.
Example (n = 3)

TT{ Tt 713 H 123 ‘ 1
ei1eoe3 H 000 ‘ 0

32[213[231
01 0



Inversion sequences

an alternative way to represent &,

Definition
The inversion sequence of a permutation T =7ty - - - 71, is an
n-tuple

e = (e1,...,en),

where

eg={ie{1,2,...,i— 1} m >m}|
counts the number of inversions “ending” in the jth position.
Example (n = 3)
T Tl TT3 \\123\132\213\231 \312\321
etege [ 000[/001|010[/002[011]012

Variants known under different names: Lehmer code, inversion
code, inversion table, etc.




Inversion sequences

ascent statistic

Definition
For an inversion sequence e = (eq,...,en) € Iy, let

asci(e)=l{ie{l,....,n—1}:e; <ei 1},

denote the number of ascents in e.



Inversion sequences

ascent statistic

Definition
For an inversion sequence e = (eq,...,en) € Iy, let

asci(e)=l{ie{l,....,n—1}:e; <ei 1},
denote the number of ascents in e.
Example (n = 3)

ejezesz | ascy(e)
000
001
002
010
011
012

NN = = a0



Observation

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage—Schuster)

Z XascI(e) — Z Xdes(rc)_

ecl, neS,



Observation

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage—Schuster)

Z Xascl(e) — Z Xdes(n]_

ecl, TTEGH
Example (n = 3)
eq{eoes ascI(e) TT{ TT2 713 des(n)
000 0 123 0
001 1 132 1
002 1 231 1
010 1 213 1
011 1 312 1
012 2 321 2




Advantage of inversion sequences

» Easy recurrence, the change in the ascent statistic
asci(e) =H{ie{1,....n—1}ei <eip1ll,

only depends on the last entry.



Advantage of inversion sequences

» Easy recurrence, the change in the ascent statistic
asci(e) =H{ie{1,....n—1}ei <eip1ll,

only depends on the last entry.

» Lend themselves to generalizations.
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Generalized inversion sequences
Recall some facts about the inversion sequences:

In:{(e1,...,€n)EZ“|O<€1<1}
={0} x{0,1} x ---x{0,1,...,n—1}.
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Generalized inversion sequences
Recall some facts about the inversion sequences:

I ={(e,...,en) €Z™" [0 < e; < i}
={0} x{0,1} x ---x{0,1,...,n—1}.

Definition

For a given sequence s = (sq,...,sn) € IN™, let L(f) denote the
set of s-inversion sequences by

I¥) = {(e1,...,en) €Z™ |0 < &; < si}.

1) —10,.. .51 —11x{0,..., 50— 1} x ---x{0,...,sp —1}.
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statistic to s-inversion sequences.
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Savage and Schuster extended the definition of the ascent
statistic to s-inversion sequences.
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FOI’e = (61,__.’en) 6 11(13), Iet
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where we use the convention eg = 0 (and so = 1).



The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the ascent
statistic to s-inversion sequences.

Definition
FOI’e g (61,__.’en) 6 11(13), Iet
asaile) =|{ic 0. m—1): < S
S Sit

where we use the convention eg = 0 (and so = 1).
Fact: The case s; = i agrees with usual inversion sequences.

e. e. 1
e < g = — <
i i4+1

whenever 0 < e, < k, for all k.



Examples

The ascent statistic on s-inversion sequences

N W R~ O

—_

€4 €2 e3

Two examples for the sequence s = (2,4, 6)

/
€4

/ !
€ €3

N W R~ O

—_



Examples

The ascent statistic on s-inversion sequences

e=(0,3,4) e’ =(1,1,2)

5
e 4
° 3

2 °

1 o0

° 0

e1 e e3 ey ey ej

Two examples for the sequence s = (2,4, 6)

N W R~ O

—_



Examples

The ascent statistic on s-inversion sequences

e=(0,3,4)
[ ]
[ ]
e o
ep €4 eo e3

N W~ O

—_

e/

(1,1,2)

/ / / /
ey ey ey eg

Two examples for the sequence s = (2,4, 6)
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Examples

The ascent statistic on s-inversion sequences

e = (0,3, 4) with
» ascy(e) = 1.
[ ]
’
ol
ep €4 eo €3

N W R~ O

—_

e’ = (1,1,2) with
» asci(e’) = 2.

/ / / /
ey ey ey eg

Two examples for the sequence s = (2,4, 6)

N W R~ O

—_



Examples

The ascent statistic on s-inversion sequences

e =(0,3,4) with e’ =(1,1,2) with
» asci(e) = 1. » asci(e’) = 2.

5

e 4

f 3

2

1

ol e 0

=31

Two examples for the sequence s = (2,4, 6)

N W R~ O

—_



s-Eulerian polynomials

Recall that

whens =1,2,...,n.



s-Eulerian polynomials

Definition (s-Eulerian polynomials)

For an arbitrary sequence s = sq, so, ..., let
Sﬁf)(x) — Z xasci(e)
eEIT(xS)
Recall that

Gn(x) _ Z XdeS(Tr)

whens =1,2,...,n.



s-Eulerian polynomials

and why do we care

Special cases of s-Eulerian polynomials, el (x):
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s-Eulerian polynomials

and why do we care

Special cases of s-Eulerian polynomials, el (x):

» s =(1,2,...,n): the Eulerian polynomial, S, (x),

» s =(2,4,...,2n): the type B Eulerian polynomial, B;, (x),

» s = (k, 2k,...,nk): the descent polynomial for the wreath
products, G, »(x),

» s = (k,k,...,k): the ascent polynomial for words over a
k-letter alphabet {0,1,2,...,k — 1},

»s=(k+1,2k+1,...,(n—1)k+ 1): the 1/k-Eulerian
polynomial, x®*¢7 (1 /k)%¥¢™,



s-Eulerian polynomials

and why do we care

Special cases of s-Eulerian polynomials, el (x):

» s =(1,2,...,n): the Eulerian polynomial, S, (x),

» s =(2,4,...,2n): the type B Eulerian polynomial, B;, (x),
s = (k, 2k, ...,nk): the descent polynomial for the wreath
products, G, »(x),
s = (k, k, ..., k): the ascent polynomial for words over a
k-letter alphabet {0,1,2,...,k — 1},
s=(k+1,2k+1,...,(n—1)k+ 1): the 1/k-Eulerian
polynomial, x®*¢7 (1 /k)%¥¢™,
s=(1,1,3,2,5,3,7,4,...,2n — 1,n): the descent
polynomial for the multiset {1,1,2,2,...,n,n}.

v

v

v

v
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On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.



On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.

Theorem (Savage, V.)
For any sequence s of nonnegative integers, the s-Eulerian

polynomials
EELS)(X): Z XaSCI(e)

eGI%s)

have only real zeros.



Proving more is sometimes easier. ..

s) x38¢1(e) we will be

Instead of working with £/ (x) = ¥ __|

working with the partial sums
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Proving more is sometimes easier. ..

s) x38¢1(e) we will be

Instead of working with £/ (x) = ¥ __|

working with the partial sums

Clearly,

IDEA: Pflsz (x) are compatible = Eﬁf)(x) has only real zeros.



A simple recurrence



A simple recurrence




Back to the proof of the main result

Again, prove something stronger

Theorem (Savage, V.)
Given a sequence s = {si}i>1, forall0 <i<j < sq,

6) PT(Si)(x) and Pr(f]) (x) are compatible
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Back to the proof of the main result

Again, prove something stronger

Theorem (Savage, V.)
Given a sequence s = {si}i>1, forall0 <i<j < sq,

@) PT(S%(X) and PT(E].) (x) are compatible, and

(ii) XPS, 3 (x) and PS]) (x) are compatible.

Corollary
P,EIS,())(X), Pffi (x), .-, PT(:lr1 (x) are compatible.
Corollary

(s)

PT(f,())(x) + PS’% (x) + -+ Py _4(x) has only real zeros.
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Use induction. Base case: (x, 1) or (x,x) or (x2,x). v
Fori < j, we have { < k.

Pl =X Py PRk ) ot Py b B

n,sp—1°7

¢
(s) (s) (s) (s) (s)
Pn+1,j :X(Pn,o"'"""Pn,eq +--~—|—Pn,k71)—|—---—|—Pn,sn71 .

k

(i) cP's) L)+ dP£L+)1 ;(x) has only real zeros because

(s) (s) (s)
EXS SR (SN {Pv}
{X ™ foga<t (e+dx)Pr g g e<p<r U Py K<y <sn

are pairwise compatible.



Proof of compatibility (cont'd)

Now

(s) (s) s)
P fpcace Ul P 0 (PR}
{X " foga<t Uletdd B fegp<k Y Jrgy<sa

are parwise compatible because:



Proof of compatibility (cont'd)

Now

(s) (s) s)
A R (L R L)
{X ™ foga<t e+ dx)Pr g 1<p<k Y Jrgy<sa

are parwise compatible because:
» Two polynomials from the same set are compatible by IH(i).



Proof of compatibility (cont'd)

Now

(s) (s) s)
A R (L R L)
{X ™ foga<t e+ dx)Pr g 1<p<k Y Jrgy<sa

are parwise compatible because:

» Two polynomials from the same set are compatible by IH(i).
(s

> xPLE) and PLS), is compatible by IH(ii).



Proof of compatibility (cont'd)

Now

(s) (s) s)
A R (L R L)
{X ™ foga<t e+ dx)Pr g 1<p<k Y Jrgy<sa

are parwise compatible because:
» Two polynomials from the same set are compatible by IH(i).
> xpﬁfgc and PS), is compatible by IH(ii).
> xP a and (c + dx) (3 are compatible because

> xPa, xPS), PLS L are pairwise compatible.



Proof of compatibility (cont'd)

Now

(s) (s) s)
P fpcace Ul P 0 (PR}
{X " foga<t Uletdd B fecp<k Y Jrgy<sa

are parwise compatible because:

» Two polynomials from the same set are compatible by IH(i).

> xPLSEX and PS), is compatible by IH(ii).

> xPn x and (c + dx)P 23 are compatible because

» xP&L, fof}s, P\*) are pairwise compatible.

» (c+ dx) B and Pny are compatible because

g Pns[)S! Pff,é, P'S) are pairwise compatible.
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n+1 J
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are pairwise compatible. v/
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Proof of compatibility (cont'd)

( ) and pls are compatible because

n+1 ]( )
(s) (s) (s)
P fpcaes U {1+ @O} U (PR
{X ™ fogas<t (e dx)Pp 1<p<k Y Jxgy<sa
are pairwise compatible. v/

(if) xPn+1 +(x) and Pn+1 ;(x) are also compatible and can be
shown in a similar way. v/



Proof of compatibility (cont'd)

( )and P are compatible because

n+1]( )

U it o )
{XP“’“ 0<a<t (c+dx)Py g <p<k Y Py K<y <sn

are pairwise compatible. v/

(if) xPn+1 .(x)and Pn+1 ;(x) are also compatible and can be
shown in a similar way. v/
Q.E.D.
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The Eulerian polynomials have only real zeros
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have only real zeros.



Combinatorics of Coxeter groups

The descents can be defined in a more general setting.
Definition (Bjérner—Brenti)
Let S be a set of Coxeter generators, m be a Coxeter matrix,
and

W=(S: (ss/)™(s3) = iq, fors,s’ € S,m(s,s’) < 00)

be the corresponding Coxeter group. Given a pair (W, S) and
o € W, let {w (o) be the length of o in W with respect to S.



Eulerian polynomials for Coxeter groups

Definition

For W a finite Coxeter group, with generator set S = {s1,...

the descent set of 0 € W'is

Dw (o) ={si € S: bw(osi) < bw(osi)}.

W(x) = Z x!Pw o)l
ocewW

,Sn)



Eulerian polynomials for Coxeter groups

Definition
For W a finite Coxeter group, with generator set S = {s1,...,sn}
the descent set of 0 € Wiis

Dw (o) ={si € S: bw(osi) < bw(osi)}.

W(x) = Z x!Pw o)l
ocewW

Conjecture (Brenti)
Eulerian polynomials W (x) for all Coxeter groups W have only
real zeros.
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Eulerian polynomials for Coxeter groups

Theorem (Brenti)

The Eulerian polynomial for type B,, and for all the exceptional
Coxeter groups has only real zeros.

Observation: Eulerian polynomials are “multiplicative”. Enough

to consider irreducible groups. Type D+, is the last remaining
piece of the puzzle. (Verified up to n = 100.)
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Eulerian polynomials for type D,

Conjecture (Brenti)
Eulerian polynomials for type D,, have only real zeros.

1. Why did type D,, resist so far?

2. Motivating question raised by Krattenthaler at SLC (Strobl):
Why don’t you apply your method to type D, ?



Answer to the first question
Why did type D,, resist so far?

Combinatorial definition is not as “pretty.” Think of elements of
Bn (resp. Dy,) as signed (resp. even-signed)
permutations. The definition of descents:

desg(o) =[{i| oy > 041} U{0 | oy > O}
desp(o) =|{i| oy > 0341} U{0 | o4 + 02 > O}

No “nice” recurrence. The only recurrence (due to Chow) is
rather complicated.



Answer to the first question
Why did type D,, resist so far?

Combinatorial definition is not as “pretty.” Think of elements of
Bn (resp. Dy,) as signed (resp. even-signed)
permutations. The definition of descents:

desg(o) =[{i| oy > 041} U{0 | oy > O}
desp(o) =|{i| oy > 0341} U{0 | o4 + 02 > O}

No “nice” recurrence. The only recurrence (due to Chow) is
rather complicated.

Dyi2(x) = (M(145x)+4x)Dy 1 (x) +4x(1—x)D] 1 (x)
+((1—=x)2 —n(1+3x)2 —4n(n —1)x(1 +2x))Dn (x)
—(4nx(1—x)(1+3x) +4x(1 —x)?)D} (x) — 4x2(1 — x)2D ¥ (x)
+(@n(n—1Dx(3+2x+3x%) +4n(n—1)(n—2)x2(1+x))Dp_1 (x)
+(2nx(1 =x)2(3+x) +8n(n—1)x2(1 —x)(1 +x))D% _; (x)

+anx?(1—x)2(1 +x)Dy 4 (x).
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Answer to the second question
Why don’t you apply your method to type D, ?

Long answer: Does not work out of the box.
Remedy: Try harder and use some tricks!

Trick 1 Look at 2D, (x) instead of D, (x).
Trick 2 Find an ascent statistic for 2D, (x).
Trick 3 Believe in your method!



Trick 1

Getting rid of parity
Recall,

desp(o) =[{i| oy > 0i41}U{0] oy 4 02 > 0}].

Proposition
Forn > 2,

Z Xdes.D o _9 Z XdesD o

o€EB, c€Dn



Trick 1

Getting rid of parity
Recall,

desp(o) = [{i| oy > 0341} U{0| oy + 02 > O}.

Proposition
Forn > 2,

Z xdesD o _9 Z XdesD o

o€EB, c€Dn

215634 — 215634



Trick 2

A type D, ascent statistic

_Ji| &i €it1
Ascale) = {i| & < 24

i+1
Ascp(e) = {i| & < £} u{0]es >0}
Ascple) = {i| S < £} uU{0ler+% >3}

Desa(o) ={i| oy > 0i41}
Desg (o) ={i| oy > 0341}U{0| 04 > 0}
Desp(o) ={i| oy > 0i41}U{0 | 01 + 02 > O}



Trick 2

A type D, ascent statistic

2D, (x) = Z xhseo(e),

661%4’6""

_Ji| &i €it1
Ascale) = {i| & < 24

i+1
Ascp(e) = {i| & < £} u{0]es >0}
Ascple) = {i| S < £} uU{0ler+% >3}

Desa(o) ={i| oy > 0i41}
Desg (o) ={i| oy > 0341}U{0| 04 > 0}
Desp(o) ={i| oy > 0i41}U{0 | 01 + 02 > O}
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Only one problem: base case does not hold.

D2o(x) =1, Da(x) = Daa(x) = x, Dag(x) = x2.



Putting all together

A recursive proof for type D,

2n—1

Dn(x) = Z Dn,i(x)-
i=0
Only one problem: base case does not hold.

D2o(x) =1, Da(x) = Daa(x) = x, Dag(x) = x2.

Also, D3(x), ..., Dss5(x) are not compatible.
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Trick 3

Leap of faith

D4o(x),...,Da7(x) are compatible. v/

By induction,
Dn,O (X)s e Dn,2n71 (X)

are compatible for all n > 4.

Corollary
Dn(x) = Y 2" " Dp.i(x) has only real zeros.
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Summary

» Unified proof of existing results, but also can be used to
solve new problems (Brenti’s type D conjecture).

» The method of compatible polynomials is a simple yet
powerful method to prove real zeros.

» A reformulation, or even generalization (s-inversion
sequences) often makes the problem easier.
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