Zeros of Generalized Eulerian Polynomials

Carla D. Savage¹ Mirkó Visontai²

¹Department of Computer Science North Carolina State University

²Google Inc (work done while at UPenn & KTH).

Geometric and Enumerative Combinatorics, IMA, 11/10/2014

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences Proving real zeros via compatible polynomials Consequences

Summary

Outline

Intro

Polynomials with (only) real zeros

Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences Proving real zeros via compatible polynomials Consequences

Summary

Polynomials with (only) real zeros

Combinatorics, algebra, geometry, analysis, ...

Surveys by: Stanley ('86), Brenti ('94), Brändén (2014+).

Combinatorial significance

Consider a generating polynomial

$$\sum_{k=0}^n a_k x^k ,$$

if it has only real zeros then the coefficients are known to be

strongly log-concave:
$$\frac{\alpha_k^2}{\binom{n}{k}\binom{n}{k}}\geqslant \frac{\alpha_{k-1}}{\binom{n}{k-1}}\frac{\alpha_{k+1}}{\binom{n}{k+1}}$$

log-concave: $a_k^2 \geqslant a_{k-1}a_{k+1}$

 $\text{unimodal:} \qquad \qquad a_0\leqslant \cdots \leqslant a_m\geqslant \cdots \geqslant a_n \quad (\text{if } a_k>0)$

Other, geometrically inspired notions: γ -nonnegativity.

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences Proving real zeros via compatible polynomials Consequences

Summary

Eulerian polynomials

as generating polynomials

For a permutation $\pi = \pi_1 \dots \pi_n$ in \mathfrak{S}_n , let

$$des(\pi) = |\{i \mid \pi_i > \pi_{i+1}\}|$$

denote the number of *descents* in π .

Definition

The Eulerian polynomial is

$$\mathfrak{S}_n(x) := \sum_{\pi \in \mathfrak{S}_n} x^{\text{des}(\pi)} = \sum_{k=0}^{n-1} \left\langle {n \atop k} \right\rangle x^k,$$

where
$$\left\langle {n\atop k}\right\rangle = |\{\pi\in\mathfrak{S}_n|\, \text{des}(\pi)=k\}|.$$

Eulerian numbers: $\binom{n}{k}$

Euler's triangle

		k:					
		0	1	2	3	4	5
n:	1	1					
	2	1	1				
	3	1	4	1			
	4	1	11	11	1		
	5	1	26	66	26	1	
	6	1	57	302	302	57	1

Eulerian numbers: $\binom{n}{k}$

Euler's triangle

▶
$$\mathfrak{S}_1(x) = 1$$
,

•
$$\mathfrak{S}_2(x) = 1 + x$$
,

•
$$\mathfrak{S}_3(x) = 1 + 4x + x^2$$
,

•
$$\mathfrak{S}_4(x) = 1 + 11x + 11x^2 + x^3, \dots$$

The zeros of $\mathfrak{S}_n(\chi)$

Theorem (Frobenius)

 $\mathfrak{S}_n(x)$ has only (negative and simple) real zeros.

The zeros of $\mathfrak{S}_n(x)$

Theorem (Frobenius)

 $\mathfrak{S}_n(x)$ has only (negative and simple) real zeros.

Corollary

For all $n \ge 1$, the Eulerian numbers

$$\left\langle {n \atop 0} \right\rangle, \left\langle {n \atop 1} \right\rangle, \dots, \left\langle {n \atop n-1} \right\rangle$$

form a (strongly) log-concave, and hence unimodal sequence.

The zeros of $\mathfrak{S}_n(x)$

Theorem (Frobenius)

 $\mathfrak{S}_{\mathfrak{n}}(x)$ has only (negative and simple) real zeros.

Corollary

For all $n \ge 1$, the Eulerian numbers

$$\left\langle {n \atop 0} \right\rangle, \left\langle {n \atop 1} \right\rangle, \dots, \left\langle {n \atop n-1} \right\rangle$$

form a (strongly) log-concave, and hence unimodal sequence. Most proofs of the theorem rely on the recurrence:

$$\mathfrak{S}_{n+1}(x) = (1+nx)\mathfrak{S}_n(x) + x(1-x)\mathfrak{S}_n'(x).$$

$$\mathfrak{S}_{n+1}(x) = (1+nx)\mathfrak{S}_n(x) + x(1-x)\mathfrak{S}_n'(x)$$

$$\mathfrak{S}_{n+1}(x) = (1+nx)\mathfrak{S}_{n}(x) + x(1-x)\mathfrak{S}'_{n}(x)$$
$$= (n+1)x\mathfrak{S}_{n}(x) + (1-x)(x\mathfrak{S}_{n}(x))'$$

$$\begin{split} \mathfrak{S}_{n+1}(x) &= (1+nx)\mathfrak{S}_{n}(x) + x(1-x)\mathfrak{S}_{n}'(x) \\ &= (n+1)x\mathfrak{S}_{n}(x) + (1-x)\left(x\mathfrak{S}_{n}(x)\right)' \\ x(1+4x+x^{2}) \end{split}$$

$$\begin{split} \mathfrak{S}_{n+1}(x) &= (1+nx)\mathfrak{S}_{n}(x) + x(1-x)\mathfrak{S}_{n}'(x) \\ &= (n+1)x\mathfrak{S}_{n}(x) + (1-x)\left(x\mathfrak{S}_{n}(x)\right)' \\ x(1+4x+x^{2}) \end{split}$$

Theorem (Obreschkoff)

- f(x) and g(x) have interlacing zeros
- $\lambda f + \mu g$ has only real zeros for any $\lambda, \mu \in \mathbb{R}$.

Problem with this method:

Theorem (Obreschkoff)

- f(x) and g(x) have interlacing zeros
- $\lambda f + \mu g$ has only real zeros for any $\lambda, \mu \in \mathbb{R}$.

Problem with this method: Does

Theorem (Obreschkoff)

- f(x) and g(x) have interlacing zeros
- $\lambda f + \mu g$ has only real zeros for any $\lambda, \mu \in \mathbb{R}$.

Problem with this method: Does not

Theorem (Obreschkoff)

- f(x) and g(x) have interlacing zeros
- $\lambda f + \mu g$ has only real zeros for any $\lambda, \mu \in \mathbb{R}$.

Problem with this method: Does not scale.

Theorem (Obreschkoff)

- f(x) and g(x) have interlacing zeros
- $\lambda f + \mu g$ has only real zeros for any $\lambda, \mu \in \mathbb{R}$.

Problem with this method: Does not scale.

$$\begin{split} \mathbf{D_{n+2}}(\mathbf{x}) &=& (n(1+5\mathbf{x})+4\mathbf{x})\mathbf{D_{n+1}}(\mathbf{x})+4\mathbf{x}(1-\mathbf{x})\mathbf{D_{n+1}}'(\mathbf{x}) \\ &+((1-\mathbf{x})^2-n(1+3\mathbf{x})^2-4n(n-1)\mathbf{x}(1+2\mathbf{x}))\mathbf{D_n}(\mathbf{x}) \\ &-(4n\mathbf{x}(1-\mathbf{x})(1+3\mathbf{x})+4\mathbf{x}(1-\mathbf{x})^2)\mathbf{D_n'}(\mathbf{x})-4\mathbf{x}^2(1-\mathbf{x})^2\mathbf{D_n''}(\mathbf{x}) \\ &+(2n(n-1)\mathbf{x}(3+2\mathbf{x}+3\mathbf{x}^2)+4n(n-1)(n-2)\mathbf{x}^2(1+\mathbf{x}))\mathbf{D_{n-1}}(\mathbf{x}) \\ &+(2n\mathbf{x}(1-\mathbf{x})^2(3+\mathbf{x})+8n(n-1)\mathbf{x}^2(1-\mathbf{x})(1+\mathbf{x}))\mathbf{D_{n-1}'}(\mathbf{x}) \\ &+4n\mathbf{x}^2(1-\mathbf{x})^2(1+\mathbf{x})\mathbf{D_{n-1}''}(\mathbf{x}). \end{split}$$

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials

Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences Proving real zeros via compatible polynomials Consequences

Summary

Definition

The polynomials $f_1(x), \ldots, f_m(x)$ over $\mathbb R$ are *compatible*, if all their conic combinations, i.e., the polynomials

$$\sum_{i=1}^m c_i f_i(x) \quad \text{for all} \ \ c_1, \dots, c_m \geqslant 0$$

have only real zeros.

Definition

The polynomials $f_1(x), \ldots, f_m(x)$ over $\mathbb R$ are *compatible*, if all their conic combinations, i.e., the polynomials

$$\sum_{i=1}^m c_i f_i(x) \quad \text{for all} \ \ c_1, \dots, c_m \geqslant 0$$

have only real zeros.

Remark (Chudnovsky-Seymour)

- $f_1(x), \ldots, f_m(x)$ are compatible if and only if
- $f_1(x), \ldots, f_m(x)$ have a common interleaver g(x).

Definition

The polynomials $f_1(x), \dots, f_m(x)$ are pairwise compatible if

 $f_i(x)$ and $f_j(x)$ are compatible

 $\text{ for all } 1 \leqslant i < j \leqslant \mathfrak{m}.$

Definition

The polynomials $f_1(x), \dots, f_m(x)$ are pairwise compatible if

$$f_i(x)$$
 and $f_j(x)$ are compatible

 $\text{ for all } 1 \leqslant i < j \leqslant \mathfrak{m}.$

Lemma (Chudnovsky-Seymour)

The polynomials $f_1(x), \ldots, f_m(x)$ are compatible if and only if they are pairwise compatible.

Advantage of compatible polynomials

- Can handle nonnegative sum of many polynomials.
- Enough to prove pairwise compatibility.

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences Proving real zeros via compatible polynomials Consequences

Summary

an alternative way to represent $\mathfrak{S}_{\mathfrak{n}}$

Definition

The inversion sequence of a permutation $\pi=\pi_1\cdots\pi_n$ is an n-tuple

$$e=(e_1,\ldots,e_n),$$

where

$$e_j = \left|\left\{i \in \{1,2,\ldots,j-1\} \,|\; \pi_i > \pi_j\right\}\right|$$

counts the number of inversions "ending" in the jth position.

an alternative way to represent \mathfrak{S}_n

Definition

The inversion sequence of a permutation $\pi=\pi_1\cdots\pi_n$ is an n-tuple

$$e = (e_1, \ldots, e_n),$$

where

$$e_j = \left|\left\{i \in \{1, 2, \dots, j-1\} \mid \pi_i > \pi_j\right\}\right|$$

counts the number of inversions "ending" in the jth position.

Example (n = 3) $\frac{\pi_1\pi_2\pi_3}{e_1e_2e_3}$ | 123 | 132 | 213 | 231 | 312 | 321 | $e_1e_2e_3$ | 000 | 001 | 010 | 002 | 011 | 012

an alternative way to represent \mathfrak{S}_n

Definition

The inversion sequence of a permutation $\pi=\pi_1\cdots\pi_n$ is an n-tuple

$$\boldsymbol{e}=(e_1,\ldots,e_n),$$

where

$$e_j = \left|\left\{i \in \{1,2,\ldots,j-1\} \mid \pi_i > \pi_j\right\}\right|$$

counts the number of inversions "ending" in the jth position.

Example (n = 3) $\frac{\pi_1\pi_2\pi_3}{e_1e_2e_3}$ | 123 | 132 | 213 | 231 | 312 | 321 | $e_1e_2e_3$ | 000 | 001 | 010 | 002 | 011 | 012

Variants known under different names: Lehmer code, inversion code, inversion table, etc.

ascent statistic

Definition

For an inversion sequence $e=(e_1,\dots,e_n)\in I_n,$ let

$$\text{asc}_{\rm I}(e) = |\{i \in \{1, \dots, n-1\} \colon e_i < e_{i+1}\}|$$
 ,

denote the number of ascents in e.

ascent statistic

Definition

For an inversion sequence $e = (e_1, \dots, e_n) \in I_n$, let

$$\text{asc}_{\rm I}(e) = |\{i \in \{1, \dots, n-1\} \colon e_i < e_{i+1}\}|$$
 ,

denote the number of ascents in e.

Example (n = 3)

$e_1e_2e_3$	$asc_{\mathrm{I}}(e)$
0 0 0	0
0 0 1	1
002	1
010	1
0 1 1	1
012	2

Observation

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage-Schuster)

$$\sum_{e \in I_n} x^{\text{asc}_I(e)} = \sum_{\pi \in \mathfrak{S}_n} x^{\text{des}(\pi)} \,.$$

Observation

The ascent statistics over inversion sequences is Eulerian.

Theorem (Savage-Schuster)

$$\sum_{\boldsymbol{e}\in I_n} x^{\text{asc}_I(\boldsymbol{e})} = \sum_{\boldsymbol{\pi}\in\mathfrak{S}_n} x^{\text{des}(\boldsymbol{\pi})}\,.$$

Example (n = 3)

$e_{1}e_{2}e_{3}$	$ \operatorname{asc}_{\mathrm{I}}(e) $	$\pi_1\pi_2\pi_3$	$des(\pi)$
000	0	123	0
0 0 1	1	132	1
002	1	231	1
010	1	213	1
0 1 1	1	312	1
012	2	321	2

Advantage of inversion sequences

► Easy recurrence, the *change* in the ascent statistic

$$\text{asc}_{\rm I}(e) = |\{i \in \{1, \dots, n-1\} \colon e_i < e_{i+1}\}|$$
 ,

only depends on the last entry.

Advantage of inversion sequences

► Easy recurrence, the *change* in the ascent statistic

$$\text{asc}_{\mathrm{I}}(e) = |\{i \in \{1, \dots, n-1\} \colon e_i < e_{i+1}\}|$$
 ,

only depends on the last entry.

Lend themselves to generalizations.

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences

Proving real zeros via compatible polynomials Consequences

Summary

Generalized inversion sequences

Recall some facts about the inversion sequences:

$$\begin{split} \mathrm{I}_{\mathfrak{n}} &= \{(e_1, \dots, e_{\mathfrak{n}}) \in \mathbb{Z}^{\mathfrak{n}} \mid 0 \leqslant e_{\mathfrak{i}} < \mathfrak{i}\} \\ &= \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, n-1\}. \end{split}$$

Generalized inversion sequences

Recall some facts about the inversion sequences:

$$\begin{split} \mathrm{I}_n &= \{(e_1, \dots, e_n) \in \mathbb{Z}^n \mid 0 \leqslant e_i < i\} \\ &= \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, n-1\}. \end{split}$$

Definition

For a given sequence $s=(s_1,\dots,s_n)\in \mathbb{N}^n$, let $I_n^{(s)}$ denote the set of s-inversion sequences by

$$I_n^{(s)} = \{(e_1, \ldots, e_n) \in \mathbb{Z}^n \mid 0 \leqslant e_i < s_i\}.$$

Generalized inversion sequences

Recall some facts about the inversion sequences:

$$\begin{split} \mathrm{I}_{\mathfrak{n}} &= \{(e_1, \dots, e_{\mathfrak{n}}) \in \mathbb{Z}^{\mathfrak{n}} \mid 0 \leqslant e_{\mathfrak{i}} < \mathfrak{i}\} \\ &= \{0\} \times \{0, 1\} \times \dots \times \{0, 1, \dots, \mathfrak{n} - 1\} \,. \end{split}$$

Definition

For a given sequence $s=(s_1,\dots,s_n)\in \mathbb{N}^n$, let $I_n^{(s)}$ denote the set of s-inversion sequences by

$$I_n^{(s)} = \{(e_1, \dots, e_n) \in \mathbb{Z}^n \mid 0 \leqslant e_i < s_i\}.$$

$$I_n^{(s)} = \{0, \dots, s_1 - 1\} \times \{0, \dots, s_2 - 1\} \times \dots \times \{0, \dots, s_n - 1\}.$$

The *ascent* statistic on *s*-inversion sequences

Savage and Schuster extended the definition of the *ascent* statistic to *s*-inversion sequences.

The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the *ascent* statistic to *s*-inversion sequences.

Definition

For
$$e = (e_1, \dots, e_n) \in I_n^{(s)}$$
, let

$$\mathsf{asc}_{\mathrm{I}}(e) = \left| \left\{ i \in \{0, \dots, n-1\} : \frac{e_i}{s_i} < \frac{e_{i+1}}{s_{i+1}} \right\} \right|$$
 ,

where we use the convention $e_0 = 0$ (and $s_0 = 1$).

The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the *ascent* statistic to s-inversion sequences.

Definition

For $e = (e_1, ..., e_n) \in I_n^{(s)}$, let

$$\mathsf{asc}_{\mathrm{I}}(e) = \left| \left\{ i \in \{0, \dots, n-1\} : \frac{e_i}{s_i} < \frac{e_{i+1}}{s_{i+1}} \right\} \right| \,,$$

where we use the convention $e_0 = 0$ (and $s_0 = 1$).

Fact: The case $s_i = i$ agrees with usual inversion sequences.

$$e_i < e_{i+1} \Longleftrightarrow \frac{e_i}{i} < \frac{e_{i+1}}{i+1}$$

whenever $0 \le e_k < k$, for all k.

The ascent statistic on s-inversion sequences

The ascent statistic on *s*-inversion sequences

$$e = (0,3,4)$$
 $e' = (1,1,2)$

The ascent statistic on *s*-inversion sequences

$$e = (0,3,4)$$
 $e' = (1,1,2)$

The ascent statistic on s-inversion sequences

$$e = (0, 3, 4)$$
 with

▶
$$asc_I(e) = 1$$
.

$$e^{\prime}=(1,1,2) \text{ with }$$

▶
$$asc_I(e') = 2$$
.

The ascent statistic on s-inversion sequences

$$e = (0, 3, 4)$$
 with

▶
$$asc_I(e) = 1$$
.

$$e^{\,\prime}=(1,1,2) \text{ with }$$

▶
$$asc_I(e') = 2$$
.

Recall that

$$\begin{split} \mathfrak{S}_{\mathfrak{n}}(x) &= \sum_{\pi \in \mathfrak{S}_{\mathfrak{n}}} x^{\mathsf{des}(\pi)} \\ &= \sum_{e \in I_{\mathfrak{n}}^{(s)}} x^{\mathsf{asc}_{I}(e)} \,, \end{split}$$

when s = 1, 2, ..., n.

Definition (s-Eulerian polynomials)

For an arbitrary sequence $s = s_1, s_2, \ldots$, let

$$\mathcal{E}_{\mathfrak{n}}^{(s)}(\textbf{x}) := \sum_{e \in I_{\mathfrak{n}}^{(s)}} \textbf{x}^{\mathsf{asc}_{I}(e)} \,.$$

Recall that

$$\mathfrak{S}_{\mathbf{n}}(\mathbf{x}) = \sum_{\pi \in \mathfrak{S}_{\mathbf{n}}} \mathbf{x}^{\mathsf{des}(\pi)}$$

$$= \sum_{e \in \mathrm{I}_{\mathbf{n}}^{(s)}} \mathbf{x}^{\mathsf{asc}_{\mathrm{I}}(e)},$$

when s = 1, 2, ..., n.

and why do we care

and why do we care

```
• s = (1, 2, ..., n): the Eulerian polynomial, \mathfrak{S}_n(x),
```

and why do we care

- s = (1, 2, ..., n): the Eulerian polynomial, $\mathfrak{S}_n(x)$,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial, $B_n(x)$,

and why do we care

- $\mathbf{s} = (1, 2, ..., n)$: the Eulerian polynomial, $\mathfrak{S}_n(\mathbf{x})$,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial, $B_n(x)$,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, $G_{n,r}(x)$,

and why do we care

- s = (1, 2, ..., n): the Eulerian polynomial, $\mathfrak{S}_n(x)$,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial, $B_n(x)$,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, $G_{n,r}(x)$,
- ▶ s = (k, k,...,k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,...,k-1},

- s = (1, 2, ..., n): the Eulerian polynomial, $\mathfrak{S}_n(x)$,
- $s = (2,4,\ldots,2n)$: the type B Eulerian polynomial, $B_n(x)$,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, $G_{n,r}(x)$,
- s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k − 1},
- $\mathbf{s}=(k+1,2k+1,\dots,(n-1)k+1)$: the 1/k-Eulerian polynomial, $\mathbf{x}^{\mathsf{exc}\,\pi}(1/k)^{\mathsf{cyc}\,\pi},$

- s = (1, 2, ..., n): the Eulerian polynomial, $\mathfrak{S}_n(x)$,
- s = (2, 4, ..., 2n): the type B Eulerian polynomial, $B_n(x)$,
- s = (k, 2k, ..., nk): the descent polynomial for the wreath products, $G_{n,r}(x)$,
- s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k − 1},
- $\mathbf{s} = (k+1, 2k+1, \dots, (n-1)k+1)$: the 1/k-Eulerian polynomial, $\chi^{\text{exc }\pi}(1/k)^{\text{cyc }\pi}$,
- ▶ s = (1, 1, 3, 2, 5, 3, 7, 4, ..., 2n 1, n): the descent polynomial for the multiset $\{1, 1, 2, 2, ..., n, n\}$.

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences

Proving real zeros via compatible polynomials

Consequences

Summary

On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.

On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.

Theorem (Savage, V.)

For any sequence s of nonnegative integers, the s-Eulerian polynomials

$$\mathcal{E}_n^{(s)}(x) = \sum_{e \in I_n^{(s)}} x^{\mathsf{asc}_I(e)}$$

have only real zeros.

Proving more is sometimes easier...

Instead of working with $\mathcal{E}_n^{(s)}(x)=\sum_{e\in I_n^{(s)}} x^{\mathsf{asc}_I(e)}$ we will be working with the partial sums

$$P_{n,k}^{(s)}(x) := \sum_{(e_1,\dots,e_{n-1},k) \in I_n^{(s)}} \chi^{\mathsf{asc}_I(e_1,\dots,e_{n-1},k)} \,.$$

Proving more is sometimes easier...

Instead of working with $\mathcal{E}_n^{(s)}(x)=\sum_{e\in I_n^{(s)}}\chi^{\mathsf{asc}_I(e)}$ we will be working with the partial sums

$$P_{n,k}^{(s)}(x) := \sum_{\substack{(e_1, \dots, e_{n-1}, k) \in I_n^{(s)}}} x^{\mathsf{asc}_I(e_1, \dots, e_{n-1}, k)} \,.$$

Clearly,

$$\mathcal{E}_{n}^{(s)}(x) = \sum_{k=0}^{s_{n}-1} P_{n,k}^{(s)}(x).$$

Proving more is sometimes easier...

Instead of working with $\mathcal{E}_{\mathfrak{n}}^{(s)}(x)=\sum_{e\in I_{\mathfrak{n}}^{(s)}}\chi^{\mathsf{asc}_{\mathrm{I}}(e)}$ we will be working with the partial sums

$$P_{n,k}^{(s)}(x) := \sum_{(e_1,\dots,e_{n-1},k) \in I_n^{(s)}} x^{\mathsf{asc}_I(e_1,\dots,e_{n-1},k)} \,.$$

Clearly,

$$\mathcal{E}_{n}^{(s)}(x) = \sum_{k=0}^{s_{n}-1} P_{n,k}^{(s)}(x).$$

IDEA: $P_{n,i}^{(s)}(x)$ are compatible $\Longrightarrow \mathcal{E}_n^{(s)}(x)$ has only real zeros.

A simple recurrence

$$P_{n+1,i}^{(s)}(x) = \sum_{j=0}^{\ell-1} x P_{n,j}^{(s)}(x) + \sum_{j=\ell}^{s_n-1} P_{n,j}^{(s)}(x)$$

A simple recurrence

$$P_{n+1,i}^{(s)}(x) \; = \; \sum_{\substack{\underline{j} \\ s_n < \frac{i}{s_{n+1}}}} x P_{n,j}^{(s)}(x) \; + \; \sum_{\substack{\underline{j} \\ s_n \geqslant \frac{i}{s_{n+1}}}} P_{n,j}^{(s)}(x)$$

Again, prove something stronger

Theorem (Savage, V.)

Given a sequence $s = \{s_i\}_{i\geqslant 1}$, for all $0\leqslant i\leqslant j < s_n$,

(i) $P_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible

Again, prove something stronger

Theorem (Savage, V.)

Given a sequence $s = \{s_i\}_{i\geqslant 1}$, for all $0\leqslant i\leqslant j < s_n$,

- (i) $P_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible, and
- (ii) $xP_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible.

Again, prove something stronger

Theorem (Savage, V.)

Given a sequence $s = \{s_i\}_{i\geqslant 1},$ for all $0\leqslant i\leqslant j < s_n,$

- (i) $P_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible, and
- (ii) $xP_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible.

Corollary

$$P_{n,0}^{(s)}(x), P_{n,1}^{(s)}(x), \dots, P_{n,s_n-1}^{(s)}(x)$$
 are compatible.

Again, prove something stronger

Theorem (Savage, V.)

Given a sequence $s = \{s_i\}_{i\geqslant 1},$ for all $0\leqslant i\leqslant j < s_n,$

- (i) $P_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible, and
- (ii) $xP_{n,i}^{(s)}(x)$ and $P_{n,j}^{(s)}(x)$ are compatible.

Corollary

$$P_{n,0}^{(s)}(x), P_{n,1}^{(s)}(x), \ldots, P_{n,s_n-1}^{(s)}(x)$$
 are compatible.

Corollary

$$P_{n,0}^{(s)}(x) + P_{n,1}^{(s)}(x) + \cdots + P_{n,s_n-1}^{(s)}(x)$$
 has only real zeros.

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) .

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) .

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) . \checkmark For i < j, we have $\ell \le k$.

$$\begin{split} P_{n+1,i}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_n-1}^{(s)}, \\ P_{n+1,j}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_n-1}^{(s)}. \end{split}$$

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) . \checkmark For i < j, we have $\ell \le k$.

$$\begin{split} P_{n+1,i}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_n-1}^{(s)}, \\ P_{n+1,j}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_n-1}^{(s)}. \end{split}$$

(i) $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,j}^{(s)}(x)$ are compatible

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) . \checkmark For i < j, we have $\ell \le k$.

$$\begin{split} P_{n+1,i}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_n-1}^{(s)}, \\ P_{n+1,j}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_n-1}^{(s)}. \end{split}$$

(i)
$$cP_{n+1,i}^{(s)}(x) + dP_{n+1,j}^{(s)}(x)$$
 has only real zeros

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) . \checkmark For i < j, we have $\ell \le k$.

$$\begin{split} P_{n+1,i}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_{n-1}}^{(s)}, \\ P_{n+1,j}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_{n-1}}^{(s)}. \end{split}$$

(i) $cP_{n+1,i}^{(s)}(x) + dP_{n+1,j}^{(s)}(x)$ has only real zeros because

$$\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell}\,\cup\,\left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k}\,\cup\,\left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are compatible.

Use induction. Base case: (x, 1) or (x, x) or (x^2, x) . \checkmark For i < j, we have $\ell \le k$.

$$\begin{split} P_{n+1,i}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)})}_{\ell} + \dots + P_{n,k-1}^{(s)} + \dots + P_{n,s_n-1}^{(s)}, \\ P_{n+1,j}^{(s)} &= x \underbrace{(P_{n,0}^{(s)} + \dots + P_{n,\ell-1}^{(s)} + \dots + P_{n,k-1}^{(s)})}_{k} + \dots + P_{n,s_n-1}^{(s)}. \end{split}$$

(i) $cP_{n+1,i}^{(s)}(x) + dP_{n+1,j}^{(s)}(x)$ has only real zeros because

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are pairwise compatible.

Now

$$\left\{xP_{\mathfrak{n},\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell}\,\cup\,\left\{(c+dx)P_{\mathfrak{n},\beta}^{(s)}\right\}_{\ell\leqslant \beta< k}\,\cup\,\left\{P_{\mathfrak{n},\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_\mathfrak{n}}$$

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are parwise compatible because:

► Two polynomials from the same set are compatible by IH(i).

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

- Two polynomials from the same set are compatible by IH(i).
- $ightharpoonup \chi P_{n,\alpha}^{(s)}$ and $P_{n,\gamma}^{(s)}$ is compatible by IH(ii).

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

- Two polynomials from the same set are compatible by IH(i).
- $xP_{n,\alpha}^{(s)}$ and $P_{n,\gamma}^{(s)}$ is compatible by IH(ii).
- $ightharpoonup xP_{n,\alpha}^{(s)}$ and $(c+dx)P_{n,\beta}^{(s)}$ are compatible because
 - $Arr xP_{n,\alpha}^{(s)}, xP_{n,\beta}^{(s)}, P_{n,\beta}^{(s)}$ are pairwise compatible.

Now

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

- Two polynomials from the same set are compatible by IH(i).
- $ightharpoonup \chi P_{n,\alpha}^{(s)}$ and $P_{n,\gamma}^{(s)}$ is compatible by IH(ii).
- ▶ $xP_{n,\alpha}^{(s)}$ and $(c + dx)P_{n,\beta}^{(s)}$ are compatible because
 - $Arr xP_{n,\alpha}^{(s)}, xP_{n,\beta}^{(s)}, P_{n,\beta}^{(s)}$ are pairwise compatible.
- $(c + dx)P_{n,\beta}^{(s)}$ and $P_{n,\gamma}^{(s)}$ are compatible because
 - ► $P_{n,\beta}^{(s)}$, $xP_{n,\beta}^{(s)}$, $P_{n,\gamma}^{(s)}$ are pairwise compatible.

(i) Thus, $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,i}^{(s)}(x)$ are compatible because

$$\left\{ x P_{n,\alpha}^{(s)} \right\}_{0 \leqslant \alpha < \ell} \, \cup \, \left\{ (c + dx) P_{n,\beta}^{(s)} \right\}_{\ell \leqslant \beta < k} \, \cup \, \left\{ P_{n,\gamma}^{(s)} \right\}_{k \leqslant \gamma < s_n}$$

are pairwise compatible.

(i) Thus, $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,i}^{(s)}(x)$ are compatible because

$$\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell}\,\cup\,\left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k}\,\cup\,\left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are pairwise compatible. <

(i) Thus, $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,i}^{(s)}(x)$ are compatible because

$$\left\{xP_{n,\alpha}^{(s)}\right\}_{0\leqslant\alpha<\ell}\,\cup\,\left\{(c+dx)P_{n,\beta}^{(s)}\right\}_{\ell\leqslant\beta< k}\,\cup\,\left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant\gamma< s_n}$$

are pairwise compatible. <

(ii) $xP_{n+1,i}^{(s)}(x)$ and $P_{n+1,j}^{(s)}(x)$ are also compatible and can be shown in a similar way.

(i) Thus, $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,i}^{(s)}(x)$ are compatible because

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are pairwise compatible. <

(ii) $xP_{n+1,i}^{(s)}(x)$ and $P_{n+1,j}^{(s)}(x)$ are also compatible and can be shown in a similar way. \checkmark

(i) Thus, $P_{n+1,i}^{(s)}(x)$ and $P_{n+1,i}^{(s)}(x)$ are compatible because

$$\left\{x P_{n,\alpha}^{(s)}\right\}_{0\leqslant \alpha<\ell} \,\cup\, \left\{(c+dx) P_{n,\beta}^{(s)}\right\}_{\ell\leqslant \beta< k} \,\cup\, \left\{P_{n,\gamma}^{(s)}\right\}_{k\leqslant \gamma< s_n}$$

are pairwise compatible. <

(ii) $xP_{n+1,i}^{(s)}(x)$ and $P_{n+1,j}^{(s)}(x)$ are also compatible and can be shown in a similar way. \checkmark Q.E.D.

Outline

Intro

Polynomials with (only) real zeros Eulerian polynomials

Toolbox

Compatible polynomials Inversion sequences

s-Eulerian polynomials

Generalized inversion sequences
Proving real zeros via compatible polynomials
Consequences

Summary

One proof for all

One proof for all

```
• s = (1, 2, ..., n): type A, \mathfrak{S}_n(x), (Frobenius),
```

One proof for all

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),

One proof for all

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),
- ▶ $\mathbf{s} = (k, 2k, ..., nk)$: the descent polynomial for the wreath products, $G_{n,r}(x)$ (Steingrímsson),

One proof for all

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),
- ▶ $\mathbf{s} = (k, 2k, ..., nk)$: the descent polynomial for the wreath products, $G_{n,r}(x)$ (Steingrímsson),
- ▶ s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k 1} (Diaconis-Fulman),

One proof for all

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),
- ▶ $\mathbf{s} = (k, 2k, ..., nk)$: the descent polynomial for the wreath products, $G_{n,r}(x)$ (Steingrímsson),
- ▶ s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k 1} (Diaconis-Fulman),
- ▶ $\mathbf{s} = (k+1, 2k+1, \dots, (n-1)k+1)$: the 1/k-Eulerian polynomial, $\mathbf{x}^{\mathsf{exc}\,\pi}(1/k)^{\mathsf{cyc}\,\pi}$ (Brenti, Brändén, Ma–Wang),

One proof for all

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),
- ▶ $\mathbf{s} = (k, 2k, ..., nk)$: the descent polynomial for the wreath products, $G_{n,r}(x)$ (Steingrímsson),
- ▶ s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k 1} (Diaconis-Fulman),
- ▶ $\mathbf{s} = (k+1, 2k+1, \dots, (n-1)k+1)$: the 1/k-Eulerian polynomial, $\mathbf{x}^{\mathsf{exc}\,\pi}(1/k)^{\mathsf{cyc}\,\pi}$ (Brenti, Brändén, Ma–Wang),
- ▶ s = (1, 1, 3, 2, 5, 3, 7, 4, ..., 2n 1, n): the descent polynomial for the multiset $\{1, 1, 2, 2, ..., n, n\}$ (Simion)

One proof for all

The fact that $\mathcal{E}_n^{(s)}(x)$ has only real zeros implies several results:

- s = (1, 2, ..., n): type A, $\mathfrak{S}_n(x)$, (Frobenius),
- s = (2, 4, ..., 2n): type B, $B_n(x)$, (Brenti),
- ▶ $\mathbf{s} = (k, 2k, ..., nk)$: the descent polynomial for the wreath products, $G_{n,r}(x)$ (Steingrímsson),
- ▶ s = (k, k,..., k): the ascent polynomial for words over a k-letter alphabet {0, 1, 2,..., k 1} (Diaconis-Fulman),
- ▶ $\mathbf{s} = (k+1, 2k+1, \dots, (n-1)k+1)$: the 1/k-Eulerian polynomial, $\mathbf{x}^{\mathsf{exc}\,\pi}(1/k)^{\mathsf{cyc}\,\pi}$ (Brenti, Brändén, Ma–Wang),
- ▶ s = (1, 1, 3, 2, 5, 3, 7, 4, ..., 2n 1, n): the descent polynomial for the multiset $\{1, 1, 2, 2, ..., n, n\}$ (Simion)

have only real zeros.

Combinatorics of Coxeter groups

The descents can be defined in a more general setting.

Definition (Björner-Brenti)

Let S be a set of Coxeter generators, $\mathfrak m$ be a Coxeter matrix, and

$$W = \langle S : (ss')^{\mathfrak{m}(s,s')} = id, \text{ for } s, s' \in S, \mathfrak{m}(s,s') < \infty \rangle$$

be the corresponding Coxeter group. Given a pair (W, S) and $\sigma \in W$, let $\ell_W(\sigma)$ be the length of σ in W with respect to S.

Definition

For W a finite Coxeter group, with generator set $S = \{s_1, \dots, s_n\}$ the descent set of $\sigma \in W$ is

$$\mathfrak{D}_W(\sigma) = \left\{ s_i \in S : \ell_W(\sigma s_i) < \ell_W(\sigma s_i) \right\}.$$

$$W(\mathbf{x}) = \sum_{\sigma \in W} \mathbf{x}^{|\mathcal{D}_W(\sigma)|}.$$

Definition

For W a finite Coxeter group, with generator set $S = \{s_1, \dots, s_n\}$ the descent set of $\sigma \in W$ is

$$\mathfrak{D}_{W}(\sigma) = \left\{ s_{\mathfrak{i}} \in S : \ell_{W}(\sigma s_{\mathfrak{i}}) < \ell_{W}(\sigma s_{\mathfrak{i}}) \right\}.$$

$$W(\mathbf{x}) = \sum_{\sigma \in W} \mathbf{x}^{|\mathcal{D}_W(\sigma)|}.$$

Conjecture (Brenti)

Eulerian polynomials W(x) for all Coxeter groups W have only real zeros.

Theorem (Brenti)

The Eulerian polynomial for type B_n and for all the exceptional Coxeter groups has only real zeros.

Theorem (Brenti)

The Eulerian polynomial for type B_n and for all the exceptional Coxeter groups has only real zeros.

Observation: Eulerian polynomials are "multiplicative". Enough to consider irreducible groups. Type D_{π} is the last remaining piece of the puzzle. (Verified up to $\pi=100$.)

Eulerian polynomials for type D_n

Conjecture (Brenti)

Eulerian polynomials for type D_n have only real zeros.

Eulerian polynomials for type D_n

Conjecture (Brenti)

Eulerian polynomials for type D_n have only real zeros.

1. Why did type D_n resist so far?

Eulerian polynomials for type D_n

Conjecture (Brenti)

Eulerian polynomials for type D_n have only real zeros.

- 1. Why did type D_n resist so far?
- 2. Motivating question raised by Krattenthaler at SLC (Strobl): Why don't you apply your method to type D_n ?

Answer to the first question

Why did type D_n resist so far?

Combinatorial definition is not as "pretty." Think of elements of B_{π} (resp. D_{π}) as signed (resp. even-signed) permutations. The definition of descents:

$$\begin{split} \text{des}_B(\sigma) &= |\{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 > 0\}| \\ \text{des}_D(\sigma) &= |\{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 + \sigma_2 > 0\}| \end{split}$$

No "nice" recurrence. The only recurrence (due to Chow) is rather complicated.

Answer to the first question

Why did type D_n resist so far?

Combinatorial definition is not as "pretty." Think of elements of B_{π} (resp. D_{π}) as signed (resp. even-signed) permutations. The definition of descents:

$$\begin{split} \text{des}_B(\sigma) &= |\{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 > 0\}| \\ \text{des}_D(\sigma) &= |\{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 + \sigma_2 > 0\}| \end{split}$$

No "nice" recurrence. The only recurrence (due to Chow) is rather complicated.

$$\begin{split} \mathbf{D_{n+2}}(\mathbf{x}) & = & & (n(1+5\mathbf{x})+4\mathbf{x})\mathbf{D_{n+1}}(\mathbf{x})+4\mathbf{x}(1-\mathbf{x})\mathbf{D_{n+1}'}(\mathbf{x}) \\ & & + ((1-\mathbf{x})^2-n(1+3\mathbf{x})^2-4\mathbf{n}(n-1)\mathbf{x}(1+2\mathbf{x}))\mathbf{D_n}(\mathbf{x}) \\ & - (4\mathbf{n}\mathbf{x}(1-\mathbf{x})(1+3\mathbf{x})+4\mathbf{x}(1-\mathbf{x})^2)\mathbf{D_n'}(\mathbf{x})-4\mathbf{x}^2(1-\mathbf{x})^2\mathbf{D_n''}(\mathbf{x}) \\ & + (2\mathbf{n}(n-1)\mathbf{x}(3+2\mathbf{x}+3\mathbf{x}^2)+4\mathbf{n}(n-1)(n-2)\mathbf{x}^2(1+\mathbf{x}))\mathbf{D_{n-1}}(\mathbf{x}) \\ & + (2\mathbf{n}\mathbf{x}(1-\mathbf{x})^2(3+\mathbf{x})+8\mathbf{n}(n-1)\mathbf{x}^2(1-\mathbf{x})(1+\mathbf{x}))\mathbf{D_{n-1}'}(\mathbf{x}) \\ & + 4\mathbf{n}\mathbf{x}^2(1-\mathbf{x})^2(1+\mathbf{x})\mathbf{D_{n-1}''}(\mathbf{x}). \end{split}$$

Answer to the second question

Why don't you apply your method to type D_n ?

Short answer: Does not work.

Answer to the second question

Why don't you apply your method to type D_n ?

Long answer: Does not work *out of the box*.

Why don't you apply your method to type D_n ?

Long answer: Does not work *out of the box*. **Remedy**: Try harder and use some tricks!

Why don't you apply your method to type D_n?

Long answer: Does not work *out of the box*. **Remedy**: Try harder and use some tricks!

Trick 1 Look at $2D_n(x)$ instead of $D_n(x)$.

Why don't you apply your method to type D_n ?

Long answer: Does not work *out of the box*. **Remedy**: Try harder and use some tricks!

Trick 1 Look at $2D_n(x)$ instead of $D_n(x)$.

Trick 2 Find an ascent statistic for $2D_n(x)$.

Why don't you apply your method to type D_n?

Long answer: Does not work *out of the box*. **Remedy**: Try harder and use some tricks!

Trick 1 Look at $2D_n(x)$ instead of $D_n(x)$.

Trick 2 Find an ascent statistic for $2D_n(x)$.

Trick 3 Believe in your method!

Getting rid of parity

Recall,

$$\text{des}_D(\sigma) = \left| \{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 + \sigma_2 > 0\} \right|.$$

Proposition

For $n \geqslant 2$,

$$\sum_{\sigma \in B_{\mathfrak{n}}} x^{\text{des}_D \; \sigma} = 2 \sum_{\sigma \in D_{\mathfrak{n}}} x^{\text{des}_D \; \sigma}.$$

Getting rid of parity

Recall,

$$\text{des}_{D}(\sigma) = \left|\left\{i \mid \sigma_{i} > \sigma_{i+1}\right\} \cup \left\{0 \mid \sigma_{1} + \sigma_{2} > 0\right\}\right|.$$

Proposition

For $n \geqslant 2$,

$$\sum_{\sigma \in B_{\mathfrak{n}}} x^{\text{des}_D \; \sigma} = \mathbf{2} \sum_{\sigma \in D_{\mathfrak{n}}} x^{\text{des}_D \; \sigma}.$$

$$\bar{2}\bar{1}56\bar{3}4 \Longleftrightarrow \bar{2}156\bar{3}4$$

A type D_n ascent statistic

$$\begin{split} & \mathsf{Asc}_A(e) = \big\{ i \mid \frac{e_i}{i} < \frac{e_{i+1}}{i+1} \big\} \\ & \mathsf{Asc}_B(e) = \big\{ i \mid \frac{e_i}{i} < \frac{e_{i+1}}{i+1} \big\} \cup \{ 0 \mid e_1 > 0 \} \\ & \mathsf{Asc}_D(e) = \big\{ i \mid \frac{e_i}{i} < \frac{e_{i+1}}{i+1} \big\} \cup \big\{ 0 \mid e_1 + \frac{e_2}{2} \geqslant \frac{3}{2} \big\} \\ & \mathsf{Des}_A(\sigma) = \{ i \mid \sigma_i > \sigma_{i+1} \} \\ & \mathsf{Des}_B(\sigma) = \{ i \mid \sigma_i > \sigma_{i+1} \} \cup \{ 0 \mid \sigma_1 > 0 \} \\ & \mathsf{Des}_D(\sigma) = \{ i \mid \sigma_i > \sigma_{i+1} \} \cup \{ 0 \mid \sigma_1 + \sigma_2 > 0 \} \end{split}$$

A type D_n ascent statistic

$$2D_n(x) = \sum_{\boldsymbol{e} \in I_n^{2,4,6,\dots}} x^{\mathsf{Asc}_D(\boldsymbol{e})}.$$

$$\begin{split} & \mathsf{Asc}_A(e) = \big\{ \mathtt{i} \mid \frac{e_\mathtt{i}}{\mathtt{i}} < \frac{e_{\mathtt{i}+1}}{\mathtt{i}+1} \big\} \\ & \mathsf{Asc}_B(e) = \big\{ \mathtt{i} \mid \frac{e_\mathtt{i}}{\mathtt{i}} < \frac{e_{\mathtt{i}+1}}{\mathtt{i}+1} \big\} \cup \{ \mathtt{0} \mid e_\mathtt{1} > \mathtt{0} \} \\ & \mathsf{Asc}_D(e) = \big\{ \mathtt{i} \mid \frac{e_\mathtt{i}}{\mathtt{i}} < \frac{e_{\mathtt{i}+1}}{\mathtt{i}+1} \big\} \cup \big\{ \mathtt{0} \mid e_\mathtt{1} + \frac{e_\mathtt{2}}{\mathtt{2}} \geqslant \frac{3}{\mathtt{2}} \big\} \end{split}$$

$$\begin{split} & \mathsf{Des}_A(\sigma) = \{i \mid \sigma_i > \sigma_{i+1}\} \\ & \mathsf{Des}_B(\sigma) = \{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 > 0\} \\ & \mathsf{Des}_D(\sigma) = \{i \mid \sigma_i > \sigma_{i+1}\} \cup \{0 \mid \sigma_1 + \sigma_2 > 0\} \end{split}$$

Putting all together

A recursive proof for type D_n

$$D_n(x) = \sum_{i=0}^{2n-1} D_{n,i}(x).$$

Putting all together

A recursive proof for type D_n

$$D_n(x) = \sum_{i=0}^{2n-1} D_{n,i}(x).$$

Only one problem: base case does not hold.

$$D_{2,0}(x)=1,\ D_{2,1}(x)=D_{2,2}(x)=x,\ D_{2,3}(x)=x^2.$$

Putting all together

A recursive proof for type D_n

$$D_n(x) = \sum_{i=0}^{2n-1} D_{n,i}(x).$$

Only one problem: base case does not hold.

$$D_{2,0}(x) = 1$$
, $D_{2,1}(x) = D_{2,2}(x) = x$, $D_{2,3}(x) = x^2$.

Also, $D_{3,0}(x), \ldots, D_{3,5}(x)$ are not compatible.

Trick 3 Leap of faith

 $D_{4,0}(x), \dots, D_{4,7}(x)$ are compatible. \checkmark

Leap of faith

$$D_{4,0}(x), \ldots, D_{4,7}(x)$$
 are compatible. \checkmark

By induction,

$$D_{n,0}(x),\ldots,D_{n,2n-1}(x)$$

are compatible for all $n \geqslant 4$.

Corollary

$$D_n(x) = \sum_{i=0}^{2n-1} D_{n,i}(x)$$
 has only real zeros.

Unified proof of existing results, but also can be used to solve new problems (Brenti's type D conjecture).

- Unified proof of existing results, but also can be used to solve new problems (Brenti's type D conjecture).
- The method of compatible polynomials is a simple yet powerful method to prove real zeros.

- Unified proof of existing results, but also can be used to solve new problems (Brenti's type D conjecture).
- The method of compatible polynomials is a simple yet powerful method to prove real zeros.
- ► A reformulation, or even generalization (s-inversion sequences) often makes the problem easier.