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Green–Tao Theorem (arXiv 2004; Annals of Math 2008)

The primes contain arbitrarily long arithmetic progressions (AP).

Szemerédi’s Theorem (1975)

Every subset of N with positive density contains arbitrarily long APs.

(upper) density of A ⊂ N is lim sup
N→∞

|A ∩ [N]|
N

[N] := {1, 2, . . . ,N}

P = prime numbers

Prime number theorem:
|P ∩ [N]|

N
∼ 1
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Proof strategy of Green–Tao theorem N

P
P = prime numbers

, S = “almost primes”

P ⊆ S with positive relative density, i.e.,
|P ∩ [N]|
|S ∩ [N]|

> δ

Step 1:

Relative Szemerédi theorem (informally)

If S ⊂ N satisfies certain pseudorandomness conditions, then every
subset of S with positive relative density contains long APs.

Step 2: Construct a superset of primes that satisfies the
pseudorandomness conditions. (Goldston–Yıldırım sieve)
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Relative Szemerédi theorem (informally)

If S ⊂ N satisfies certain pseudorandomness conditions, then every
subset of S with positive relative density contains long APs.

Step 2: Construct a superset of primes that satisfies the
pseudorandomness conditions. (Goldston–Yıldırım sieve)



Proof strategy of Green–Tao theorem N

S P
P = prime numbers, S = “almost primes”

P ⊆ S with positive relative density, i.e.,
|P ∩ [N]|
|S ∩ [N]|

> δ

Step 1:
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Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If S ⊂ N satisfies certain pseudorandomness conditions, then every
subset of S with positive relative density contains long APs.

What pseudorandomness conditions?

Green–Tao:
1 Linear forms condition

2 Correlation condition

← no longer needed

A natural question (asked by Gowers & Green)

Does relative Szemerédi theorem hold with weaker and more natural
hypotheses?

Theorem (Conlon, Fox, Z.)

Yes! A weaker linear forms condition suffices.
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Szemerédi’s theorem
Host set: N

Relative Szemerédi theorem
Host set: some sparse subset of integers

Random host set

Kohayakawa– Luczak–Rödl ’96 3-AP, p � N−1/2

Conlon–Gowers ’10+
Schacht ’10+

k-AP, p � N−1/(k−1)

Pseudorandom host set

Green–Tao ’08 linear forms + correlation

Conlon–Fox–Z. ’13+ linear forms

Conclusion: relatively dense subsets contain long APs
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Roth’s theorem

Roth’s theorem (1952)

If A ⊆ [N] is 3-AP-free, then |A| = o(N).

[N] := {1, 2, . . . ,N}

3-AP = 3-term arithmetic progression

It’ll be easier (and equivalent) to work in ZN := Z/NZ.

Roth’s original proof uses Fourier analysis.
Let us recall a graph theoretic proof.
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Proof of Roth’s theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Given A, construct tripartite
graph GA with vertex sets
X = Y = Z = ZN .

Triangle xyz in GA ⇐⇒
2x + y , x − z , −y − 2z ∈ A

It’s a 3-AP with diff −x − y − z

GA

X

Y Z

No triangles? Only triangles ←→ trivial 3-APs with diff 0.
Every edge of the graph is contained in exactly one triangle
(the one with x + y + z = 0).
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Relative Roth theorem

Roth’s theorem (1952)

If A ⊆ ZN is 3-AP-free, then |A| = o(N).

Relative Roth theorem (Conlon, Fox, Z.)

If S ⊆ ZN satisfies the 3-linear forms condition,
and A ⊆ S is 3-AP-free, then |A| = o(|S |).

ZN

ZNZN

GS x

y z

x ∼ y iff
2x + y ∈ S

x ∼ z iff
x − z ∈ S

y ∼ z iff
−y − 2z ∈ S

3-linear forms condition:
GS has asymp. the same H-density as a
random graph for every H ⊆ K2,2,2
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Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density
graphs, many quasirandomness conditions are equivalent, one of which
is having the correct C4 count

2-blow-up−−−−−−→

In sparse graphs, the Chung–Graham–Wilson equivalences do not hold.

Our results can be viewed as saying that:

Many extremal and Ramsey results about H (e.g., H = K3) in sparse
graphs hold if there is a host graph that behaves pseudorandomly with
respect to counts of the 2-blow-up of H.

2-blow-up−−−−−−→
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Relative Szemerédi theorem (Conlon, Fox, Z.)

Fix k ≥ 3. If S ⊆ ZN satisfies the k-linear forms condition,
and A ⊆ S is k-AP-free, then |A| = o(|S |).

k = 4: build a 4-partite 3-uniform hypergraph

Vertex sets W = X = Y = Z = ZN

x y

zw

X Y

ZW
wxy ∈ E ⇐⇒ 3w + 2x + y ∈ S

wxz ∈ E ⇐⇒ 2w + x − z ∈ S

wyz ∈ E ⇐⇒ w − y − 2z ∈ S

xyz ∈ E ⇐⇒ −x − 2y − 3z ∈ S

4-AP with common diff: −w − x − y − z

4-linear forms condition: H-density in this hypergraph is asymp. same

as random for any H ⊆ K
(3)
4 [2] := 2-blow-up of K

(3)
4
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Roth’s theorem: from one 3-AP to many 3-APs

Roth’s theorem

∀δ > 0, for sufficiently large N,
every A ⊂ ZN with |A| ≥ δN contains a 3-AP.

By an averaging argument (Varnavides), we get many 3-APs:

Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every A ⊂ ZN with |A| ≥ δN contains at least cN2 many 3-APs.
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Transference

Start with

(sparse) A ⊂ S ⊂ ZN , |A| ≥ δ |S |

One can find a dense model Ã for A:

(dense) Ã ⊂ ZN ,
|Ã|
N
≈ |A|
|S |
≥ δ

Counting lemma will tell us that(
N

|S |

)3

|{3-APs in A}| ≈ |{3-APs in Ã}|

≥ cN2 [By Roth’s Theorem]

(blackbox application)

=⇒ relative Roth theorem (also works for k-term AP)
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(dense) Ã ⊂ ZN ,
|Ã|
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≥ cN2 [By Roth’s Theorem]

(blackbox application)

=⇒ relative Roth theorem (also works for k-term AP)



Converting to functional language

Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every A ⊂ ZN with |A| ≥ δN contains at least cN2 many 3-APs.

Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every f : ZN → [0, 1] with Ef ≥ δ satisfies

AP3(f ) := Ex ,d∈ZN
[f (x)f (x + d)f (x + 2d)] ≥ c .
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Sparse setting

Sparse set A ⊆ S ⊂ ZN correspond to (normalized) indicator functions

ν =
N

|S |
1S and f =

N
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1A.

|A| ≥ δ|S | becomes Ef ≥ δ.

More generally, we consider any (say that f is majorized by ν)

f ≤ ν : ZN → [0,∞) (pointwise inequality)

with
Eν = 1 and Ef ≥ δ.
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3-linear forms condition

The density of K2,2,2 in

ZN

ZNZN

x

y
z

ν(2x + y) ν(x − z)

ν(−y − 2z)



Relative Roth theorem (Conlon, Fox, Z.)

∀δ > 0 ∃c > 0 so that for sufficiently large N, if
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Transference

Start with f ≤ ν : ZN → [0,∞)

(sparse) f : ZN → [0,∞) Ef ≥ δ

Dense model theorem: one can approximate f (in cut norm) by

(dense) f̃ : ZN → [0, 1] Ef̃ = Ef

Counting lemma implies

AP3(f ) ≈ AP3(f̃ )

≥ c [By Roth’s Thm (weighted version)]
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Green–Tao: based on Gowers uniformity norm

Our approach: cut norm (aka discrepancy)

Using cut norm:

Cheaper dense model theorem

More difficult counting lemma



In what sense does 0 ≤ f̃ ≤ 1 approximate 0 ≤ f ≤ ν?

Green–Tao: based on Gowers uniformity norm

Our approach: cut norm (aka discrepancy)

Using cut norm:

Cheaper dense model theorem

More difficult counting lemma



In what sense does 0 ≤ f̃ ≤ 1 approximate 0 ≤ f ≤ ν?

Green–Tao: based on Gowers uniformity norm

Our approach: cut norm (aka discrepancy)

Using cut norm:

Cheaper dense model theorem

More difficult counting lemma



Cut norm for weighted bipartite graph (Frieze–Kannan):
g : X × Y → R

‖g‖� :=
1

|X | |Y |
sup
A⊆X
B⊆Y

∣∣∣∣∣∑
x∈A
y∈B

g(x , y)

∣∣∣∣∣
A

B

X Y

Cut norm for ZN : f : ZN → R

‖f ‖� :=
1

N2
sup

A,B⊆ZN

∣∣∣∣∣∑
x∈A
y∈B

f (x + y)

∣∣∣∣∣
Dense model theorem

Assume ν : ZN → [0,∞) satisfies ‖ν − 1‖� = o(1).

Then ∀ 0 ≤ f ≤ ν, ∃ f̃ : ZN → [0, 1] s.t. ‖f − f̃ ‖� = o(1).
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2. Separating hyperplane theorem (Hahn-Banach)
+ Weierstrass polynomial approximation theorem

(Gowers & Reingold–Trevisan–Tulsiani–Vadhan)

Specialized/simplified for the cut norm on ZN (Z.)



Dense model theorem

Dense model theorem

Assume ν : ZN → [0,∞) satisfies ‖ν − 1‖� = o(1).

Then ∀ 0 ≤ f ≤ ν, ∃ f̃ : ZN → [0, 1] s.t. ‖f − f̃ ‖� = o(1).

Proof of the general dense model theorem

1. Regularity-type energy-increment argument
(Green–Tao, Tao–Ziegler)

2. Separating hyperplane theorem (Hahn-Banach)
+ Weierstrass polynomial approximation theorem

(Gowers & Reingold–Trevisan–Tulsiani–Vadhan)

Specialized/simplified for the cut norm on ZN (Z.)



Dense model theorem

Dense model theorem

Assume ν : ZN → [0,∞) satisfies ‖ν − 1‖� = o(1).

Then ∀ 0 ≤ f ≤ ν, ∃ f̃ : ZN → [0, 1] s.t. ‖f − f̃ ‖� = o(1).

Proof of the general dense model theorem

1. Regularity-type energy-increment argument
(Green–Tao, Tao–Ziegler)

2. Separating hyperplane theorem (Hahn-Banach)
+ Weierstrass polynomial approximation theorem

(Gowers & Reingold–Trevisan–Tulsiani–Vadhan)

Specialized/simplified for the cut norm on ZN (Z.)



Higher cut norms (for 4-term AP)

3-uniform weighted hypergraph g : X × Y × Z → R, define

‖g‖� :=
1

|X | |Y | |Z |
sup

A⊆Y×Z
B⊆X×Z
C⊆X×Y

∣∣∣∣∣ ∑
x∈X ,y∈Y ,z∈Z

(y ,z)∈A
(x ,z)∈B
(x ,y)∈C

g(x , y , z)

∣∣∣∣∣.

i.e., supremum taken over all 2-graphs between X ,Y ,Z
For f : ZN → R,

‖f ‖�,3 := sup
a,b,c : ZN→[0,1]

∣∣∣∣Ex ,y ,z∈ZN
f (x + y + z)a(y , z)b(x , z)c(x , y)

∣∣∣∣



Transference

Start with f ≤ ν : ZN → [0,∞)

(sparse) f : ZN → [0,∞) Ef ≥ δ

Dense model theorem: one can approximate f (in cut norm) by

(dense) f̃ : ZN → [0, 1] Ef̃ = Ef

Counting lemma implies

AP3(f ) ≈ AP3(f̃ ) ≥ c [By Roth’s Thm (weighted version)]

=⇒ relative Roth theorem
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Counting lemma

Weighted graphs g , g̃ : (X × Y ) ∪ (X × Z ) ∪ (Y × Z )→ R
Triangle density t(g) := Ex ,y ,z [g(x , y)g(x , z)g(y , z)]

Triangle counting lemma (dense setting)

Assume 0 ≤ g , g̃ ≤ 1. If ‖g − g̃‖� ≤ ε, then

t(g) = t(g̃) + O(ε).

x

y z

|E[(g(x , y)− g̃(x , y))a(x)b(y)]| ≤ ε ∀a : X → [0, 1], b : Y → [0, 1]

t(g) = E[g(x , y)g(x , z)g(y , z)]

= E[g̃(x , y)g(x , z)g(y , z)] + O(ε)

= E[g̃(x , y)g̃(x , z)g(y , z)] + O(ε)

= E[g̃(x , y)g̃(x , z)g̃(y , z)] + O(ε) = t(g̃) + O(ε)

This argument doesn’t work in the sparse setting (g unbounded)
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Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that ν satisfies the 3-linear forms condition.
If 0 ≤ g ≤ ν, 0 ≤ g̃ ≤ 1 and ‖g − g̃‖� = o(1), then

t(g) = t(g̃) + o(1)

Recall t(g) = E[g(x , y)g(x , z)g(y , z)]

Proof ingredients

1 Cauchy-Schwarz

2 Densification

3 Apply cut norm/discrepancy (as in dense case)



Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that ν satisfies the 3-linear forms condition.
If 0 ≤ g ≤ ν, 0 ≤ g̃ ≤ 1 and ‖g − g̃‖� = o(1), then

t(g) = t(g̃) + o(1)

Recall t(g) = E[g(x , y)g(x , z)g(y , z)]

Proof ingredients

1 Cauchy-Schwarz

2 Densification

3 Apply cut norm/discrepancy (as in dense case)



Densification

x

y zz ′

E[g(x , z)g(y , z)g(x , z ′)g(y , z ′)]

= E[g ′(x , y)g(x , z)g(y , z)]

Set g ′(x , y) := Ez ′ [g(x , z ′)g(y , z ′)],
i.e., normalized codegrees

g ′(x , y) . 1 for almost all (x , y)
(since g ≤ ν and ν is pseudorandom)
g ′ behaves like a dense weighted graph

Made X × Y dense. Now repeat for X × Z and Y × Z .
Reduce to dense setting.



Densification

x

y zz ′

E[g(x , z)g(y , z)g(x , z ′)g(y , z ′)]

= E[g ′(x , y)g(x , z)g(y , z)]

Set g ′(x , y) := Ez ′ [g(x , z ′)g(y , z ′)],
i.e., normalized codegrees

g ′(x , y) . 1 for almost all (x , y)
(since g ≤ ν and ν is pseudorandom)
g ′ behaves like a dense weighted graph

Made X × Y dense. Now repeat for X × Z and Y × Z .
Reduce to dense setting.



Densification

x

y z

E[g(x , z)g(y , z)g(x , z ′)g(y , z ′)]

= E[g ′(x , y)g(x , z)g(y , z)]

Set g ′(x , y) := Ez ′ [g(x , z ′)g(y , z ′)],
i.e., normalized codegrees

g ′(x , y) . 1 for almost all (x , y)
(since g ≤ ν and ν is pseudorandom)
g ′ behaves like a dense weighted graph

Made X × Y dense. Now repeat for X × Z and Y × Z .
Reduce to dense setting.



Densification

x

y z

E[g(x , z)g(y , z)g(x , z ′)g(y , z ′)]

= E[g ′(x , y)g(x , z)g(y , z)]

Set g ′(x , y) := Ez ′ [g(x , z ′)g(y , z ′)],
i.e., normalized codegrees

g ′(x , y) . 1 for almost all (x , y)
(since g ≤ ν and ν is pseudorandom)
g ′ behaves like a dense weighted graph

Made X × Y dense. Now repeat for X × Z and Y × Z .
Reduce to dense setting.



Transference

Start with f ≤ ν

(sparse) f : ZN → [0,∞) Ef ≥ δ

Dense model theorem: one can approximate f (in cut norm) by

(dense) f̃ : ZN → [0, 1] Ef̃ = Ef

Counting lemma implies

AP3(f ) ≈ AP3(f̃ ) ≥ c [By Roth’s Thm (weighted version)]

=⇒ relative Roth theorem



Further application of densification

Tao & Ziegler (arXiv Sept 2014): Narrow progressions in the primes

Any δ-proportion of primes ≤ N contains a k-AP with common
difference O(logLk N)

Also for polynomial progression in the primes (originally
Tao–Ziegler ’08)

Proof uses densification.

Open Problem (bounded gaps)

Prove there exist infinitely many 3-APs of primes with bounded
common difference.

Maynard/Tao: ∃ infinitely many intervals of length k with � log k primes.
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Further remarks

The transference proof applies Szemerédi’s theorem as a black box
to the sparse relative setting (preserving quantitative bounds).

Same applies to multidimensional Szemerédi theorem:

Theorem (Tao ’06)

The Gaussian primes contain arbitrary constellations.

The situation for dense subsets of P × P is quite different.
See Tao–Ziegler & Cook–Magyar–Titichetrakun (also Fox–Z.)
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to the sparse relative setting (preserving quantitative bounds).

Same applies to multidimensional Szemerédi theorem:
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Relative hypergraph removal lemma

More generally, we transfer the hypergraph removal lemma to the
sparse relative setting.

E.g., (everything generalizes to hypergraphs)

Triangle removal lemma

If G is a graph on N vertices with o(N3) triangles, then all triangles
can be removed by deleting o(N2) edges.

Relative triangle removal lemma (Conlon, Fox, Z.)

Let Γ be a graph on N vertices and edge-density p satisfying the
triangle-linear forms condition, and G a subgraph of Γ.
If G has o(p3N3) triangles, then all triangles of G can be removed by
deleting o(pN2) edges.

The triangle-linear forms condition is the pseudorandomness w.r.t.
H-density, whenever H ⊆ K2,2,2 (as we saw earlier).
This gives another route for proving the relative Szemerédi theorem.



Relative hypergraph removal lemma

More generally, we transfer the hypergraph removal lemma to the
sparse relative setting. E.g., (everything generalizes to hypergraphs)

Triangle removal lemma

If G is a graph on N vertices with o(N3) triangles, then all triangles
can be removed by deleting o(N2) edges.

Relative triangle removal lemma (Conlon, Fox, Z.)

Let Γ be a graph on N vertices and edge-density p satisfying the
triangle-linear forms condition, and G a subgraph of Γ.
If G has o(p3N3) triangles, then all triangles of G can be removed by
deleting o(pN2) edges.

The triangle-linear forms condition is the pseudorandomness w.r.t.
H-density, whenever H ⊆ K2,2,2 (as we saw earlier).
This gives another route for proving the relative Szemerédi theorem.
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