Sensitivity-Based Topology and Shape Optimization for Electrical Machines subject to Nonlinear Magnetostatics

Peter Gangl1,2

Joint work with Ulrich Langer (JKU Linz / RICAM, Austria), Samuel Amstutz (Avignon, France), Antoine Laurain (Sao Paulo, Brazil), Kevin Sturm (Essen, Germany)
Gerd Bramer dorfer, Siegfried Silber, Wolfgang Amrhein (LCM, Linz, Austria)

1Doctoral Program “Computational Mathematics”, JKU Linz, Austria
2Linz Center of Mechatronics GmbH, Linz, Austria

IMA Special Workshop Frontiers in PDE-constrained Optimization

June 10, 2016
Outline

1. Motivation and Problem Description
2. Topology Optimization
3. Shape Optimization
4. A Locally Modified Finite Element Method
5. Application to Electric Motor
6. Conclusion & Outlook
Outline

1 Motivation and Problem Description

2 Topology Optimization

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Motivation

Consider electric motors as used in washing machines, computer cooling fans, assembly tools.

Goal: Find *optimal* design

Possible Objectives:
- Maximum torque
- Minimal torque ripple
- Smooth rotation (little noise and vibration)

Figure: Real world motor by Hanning Elektro-Werke GmbH & Co KG
Model Problem: Two-dimensional Model (2D Magnetostatics)

- . . . air
- . . . iron
- . . . magnets
- . . . coils
Model Problem: Two-dimensional Model (2D Magnetostatics)

... air
... iron
... magnets
... coils
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)
Model Problem: Two-dimensional Model (2D Magnetostatics)

Goal: Find optimal geometry for electric motor
Motivation and Problem Description

Model Problem from 2D Magnetostatics

\[
\min_{\Omega_f} \mathcal{J}(\Omega_f) = \mathcal{J}(u(\Omega_f))
\]

subject to
\[
-\text{div} \left(\nu_{\Omega_f}(|\nabla u|) \nabla u \right) = F \quad \text{in} \ \Omega
\]
\[
u_{\Omega_f}(x, |\nabla u|) = \chi_{\Omega_f}(x) \hat{\nu}(|\nabla u|) + \chi_{\Omega_{air}}(x) \nu_0
\]

with the magnetic reluctivity

where

- \(F = J_3 - \text{div} \left((-M_2)^T \right) \) with \((M_1, M_2) \) magnetization
- \(\Omega_f \subset \Omega \) ... ferromagnetic subdomain
- \(\Omega_{air} = \Omega \setminus \Omega_f \)
- \(\mathbf{B} = \text{curl} \ (0, 0, u)^T \) ... magn. flux density
- \(\nu_0 = \text{const} > 0 \) reluctivity of air
- Natural Assumptions:
 - \(0 < m \leq \hat{\nu}(s) \leq \nu_0 \)
 - \(0 < m \leq (\hat{\nu}(s)s)' \leq M \)

\[\hat{\nu}(|\mathbf{B}|) \]

magnetic reluctivity \(\hat{\nu} \)
Model Problem from 2D Magnetostatics

\[
\min_{\Omega_f} J(\Omega_f) = J(u(\Omega_f))
\]

s.t. \[
\begin{align*}
-\text{div} \left(\nu_{\Omega_f}(\nabla u) \right) & = F \quad \text{in } \Omega \\
\nu & = 0 \quad \text{on } \partial \Omega
\end{align*}
\] (1)

with the magnetic reluctivity

\[
\nu_{\Omega_f}(x, \nabla u) = \chi_{\Omega_f}(x) \hat{\nu}(\nabla u) + \chi_{\Omega_{air}}(x) \nu_0
\]

where

- \(F = J_3 - \text{div} \left(\left(\begin{array}{c} -M_2 \\ M_1 \end{array} \right) \right) \) with \(\left(\begin{array}{c} M_1 \\ M_2 \end{array} \right) \) magnetization
- \(\Omega_f \subset \Omega \) ... ferromagnetic subdomain
- \(\Omega_{air} = \Omega \setminus \Omega_f \)
- \(\mathbf{B} = \text{curl } ((0, 0, u)^T) \) ... magn. flux density
- \(\nu_0 = \text{const} > 0 \) reluctivity of air
- Natural Assumptions:
 - \(0 < m \leq \hat{\nu}(s) \leq \nu_0 \)
 - \(0 < m \leq (\hat{\nu}(s)s)' \leq M \)
Model Problem from 2D Magnetostatics

\[
\begin{align*}
\min_{\Omega_f} \quad & J(\Omega_f) = J(u(\Omega_f)) \\
\text{s.t.} \quad & -\text{div} \left(\nu_{\Omega_f} (|\nabla u|) \nabla u \right) = F \quad \text{in } \Omega \\
& u = 0 \quad \text{on } \partial \Omega
\end{align*}
\]

(1)

with the magnetic reluctivity

\[
\nu_{\Omega_f} (x, |\nabla u|) = \chi_{\Omega_f} (x) \hat{\nu}(|\nabla u|) + \chi_{\Omega_{air}} (x) \nu_0
\]

where

- \(F = J_3 - \text{div} \left(\left(\begin{array}{c} -M_2 \\ M_1 \end{array} \right) \right) \) with \(\left(\begin{array}{c} M_1 \\ M_2 \end{array} \right) \) magnetization
- \(\Omega_f \subset \Omega \) ... ferromagnetic subdomain
- \(\Omega_{air} = \Omega \setminus \Omega_f \)
- \(B = \text{curl} \ ((0, 0, u)^T) \) ... magn. flux density
- \(\nu_0 = \text{const} > 0 \) reluctivity of air
- Natural Assumptions:
 - \(0 < m \leq \hat{\nu}(s) \leq \nu_0 \)
 - \(0 < m \leq (\hat{\nu}(s)s)' \leq M \)

Model Problem from 2D Magnetostatics

\[
\min_{\Omega_f} \mathcal{J}(\Omega_f) = \mathcal{J}(u(\Omega_f))
\]

s.t. \[
\begin{aligned}
-\text{div} \left(\nu_{\Omega_f}(\nabla u) \right) \nabla u &= F & \text{in } \Omega \\
u &= 0 & \text{on } \partial \Omega
\end{aligned}
\] (1)

with the magnetic reluctivity

\[
\nu_{\Omega_f}(x, |\nabla u|) = \chi_{\Omega_f}(x) \hat{\nu}(|\nabla u|) + \chi_{\Omega_{air}}(x) \nu_0
\]

where

- \(F = J_3 - \text{div} \left(\left(\begin{smallmatrix} -M_2 \\ M_1 \end{smallmatrix} \right) \right) \) with \(\left(\begin{smallmatrix} M_1 \\ M_2 \end{smallmatrix} \right) \) magnetization
- \(\Omega_f \subset \Omega \) ... ferromagnetic subdomain
- \(\Omega_{air} = \Omega \setminus \Omega_f \)
- \(B = \text{curl} \left((0, 0, u)^T \right) \) ... magn. flux density
- \(\nu_0 = \text{const} > 0 \) reluctance of air
- Natural Assumptions:
 - \(0 < m \leq \hat{\nu}(s) \leq \nu_0 \)
 - \(0 < m \leq (\hat{\nu}(s)s)' \leq M \)
Outline

1 Motivation and Problem Description

2 Topology Optimization
 - Overview
 - On/Off Method by Takahashi et al.
 - Topological Derivative for Nonlinear Magnetostatics
 - Comparison with On/Off Sensitivity
 - Computational Issues
 - Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Outline

1 Motivation and Problem Description

2 Topology Optimization
 ■ Overview
 ■ On/Off Method by Takahashi et al.
 ■ Topological Derivative for Nonlinear Magnetostatics
 ■ Comparison with On/Off Sensitivity
 ■ Computational Issues
 ■ Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Design Optimization Approaches

- Density-Based Approaches
Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
- Shape Optimization

Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
- Shape Optimization

Optimization of electrical equipment
- Sizing/Parameter Optimization

Design Optimization Approaches

- Density-Based Approaches
- Level Set Method

- Shape Optimization

Optimization of electrical equipment

- Sizing/Parameter Optimization
- Heuristic Methods
Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
- Shape Optimization

Optimization of electrical equipment
- Sizing/Parameter Optimization
- Heuristic Methods
- Sensitivity w.r.t. material coefficient ("On/Off Method")
Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
- Shape Optimization

Optimization of electrical equipment

- Sizing/Parameter Optimization
- Heuristic Methods
- Sensitivity w.r.t. material coefficient ("On/Off Method")

Design Optimization Approaches

- Density-Based Approaches
- Level Set Method
- Shape Optimization

Optimization of electrical equipment

- Sizing/Parameter Optimization
- Heuristic Methods
- Sensitivity w.r.t. material coefficient ("On/Off Method")

Outline

1 Motivation and Problem Description

2 Topology Optimization
 - Overview
 - On/Off Method by Takahashi et al.
 - Topological Derivative for Nonlinear Magnetostatics
 - Comparison with On/Off Sensitivity
 - Computational Issues
 - Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Sensitivity-Based Top. Opt.: On/Off Method

\[\min_{\Omega_f} \mathcal{J}(\Omega_f) = \mathcal{J}(u(\Omega_f)) \]

\[
\begin{cases}
-\text{div} \left(\nu_{\Omega_f}(|\nabla u|) \nabla u \right) = F & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}
\]

where \(\nu_{\Omega_f}(|\nabla u|) = \chi_{\Omega_f} \hat{\nu}(|\nabla u|) + \chi_{\Omega_{\text{air}}} \nu_0 \).

- iron/air only via \(\nu \)
- \(\hat{\nu} \ll \nu_0 \)
Sensitivity-Based Top. Opt.: On/Off Method

\[
\begin{align*}
\min_{\Omega_f} & \quad J(\Omega_f) = J(u(\Omega_f)) \\
\{ & \quad \text{div} \left(\nu_{\Omega_f} (|\nabla u|) \nabla u \right) = F \quad \text{in } \Omega \\
& \quad u = 0 \quad \text{on } \partial \Omega
\end{align*}
\]

iron/air only via \(\nu \)

\(\hat{\nu} \ll \nu_0 \)

where \(\nu_{\Omega_f} (|\nabla u|) = \chi_{\Omega_f} \hat{\nu}(|\nabla u|) + \chi_{\Omega_{\text{air}}} \nu_0 \).

Idea: For each triangle \(T_k \) compute sensitivity w.r.t. change of \(\nu_k \) (reluctivity in \(T_k \))

\[
\frac{dJ}{d\nu_k}
\]

and switch elements from iron to air (i.e. from “ON” to “OFF”) where sensitivity (most) negative.
Sensitivity-Based Top. Opt.: On/Off Method

\[
\begin{align*}
\min_{\Omega_f} \mathcal{J}(\Omega_f) &= \mathcal{J}(u(\Omega_f)) \\
\left\{ \begin{array}{l}
-\text{div} \left(\nu_{\Omega_f}(|\nabla u|) \nabla u \right) = F & \text{in } \Omega \\
u &= 0 & \text{on } \partial\Omega
\end{array} \right.
\end{align*}
\]

where \(\nu_{\Omega_f}(|\nabla u|) = \chi_{\Omega_f} \hat{\nu}(|\nabla u|) + \chi_{\Omega_{air}} \nu_0 \).

Idea: For each triangle \(T_k \) compute sensitivity w.r.t. change of \(\nu_k \) (reluctivity in \(T_k \))

\[
\frac{d\mathcal{J}}{d\nu_k}
\]

and switch elements from **iron** to **air** (i.e. from “ON” to “OFF”) where sensitivity (most) negative.

\[
\mathcal{J}_{\text{init}} = 1.71055 \times 10^{-3}
\]
\[
\mathcal{J}_{\text{opt}} = 0.98557 \times 10^{-3}
\]
Sensitivity-Based Top. Opt.: On/Off Method

\[
\min_{\Omega_f} \mathcal{J}(\Omega_f) = \mathcal{J}(u(\Omega_f))
\]

\[
\begin{aligned}
-\text{div} \left(\nu_{\Omega_f}(|\nabla u|)\nabla u \right) &= F \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{aligned}
\]

where \(\nu_{\Omega_f}(|\nabla u|) = \chi_{\Omega_f} \hat{\nu}(|\nabla u|) + \chi_{\Omega_{\text{air}}} \nu_0 \).

Idea: For each triangle \(T_k \) compute sensitivity w.r.t. change of \(\nu_k \) (reluctivity in \(T_k \))

\[
\frac{d\mathcal{J}}{d\nu_k}
\]

and switch elements from iron to air (i.e. from “ON” to “OFF”) where sensitivity (most) negative.

\[
\begin{aligned}
\mathcal{J}_{\text{init}} &= 1.71055 \times 10^{-3} \\
\mathcal{J}_{\text{opt}} &= 0.98557 \times 10^{-3}
\end{aligned}
\]

Heuristic method!
Outline

1 Motivation and Problem Description

2 Topology Optimization
 - Overview
 - On/Off Method by Takahashi et al.
 - Topological Derivative for Nonlinear Magnetostatics
 - Comparison with On/Off Sensitivity
 - Computational Issues
 - Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Outline

2 Topology Optimization

- Overview
- On/Off Method by Takahashi et al.
- Topological Derivative for Nonlinear Magnetostatics
 - Preliminaries
 - Variations at scale ε
 - Topological Asymptotic Expansion (1)
 - Variations at scale 1
 - Topological Asymptotic Expansion (2)
- Comparison with On/Off Sensitivity
- Computational Issues
- Numerical Experiments
Overview: Topological Derivative

Idea:

Sensitivity of $J = J(\Omega) = J(u(\Omega))$ w.r.t. insertion of hole $\omega_\varepsilon = x_0 + \varepsilon \omega$ ($\omega \ldots$ unit disk (e.g.))
Overview: Topological Derivative

Idea:

Sensitivity of $J = J(\Omega) = J(u(\Omega))$ w.r.t. insertion of hole $\omega_\varepsilon = x_0 + \varepsilon \omega$ ($\omega \ldots$ unit disk (e.g.))
Overview: Topological Derivative

Idea:
Sensitivity of $J = J(\Omega) = J(u(\Omega))$ w.r.t. insertion of hole $\omega_\varepsilon = x_0 + \varepsilon \omega$
($\omega \ldots$ unit disk (e.g.))

Topological asymptotic expansion

$$J(u(\Omega_\varepsilon)) - J(u(\Omega)) = \varepsilon^N G(x_0) + o(\varepsilon^N)$$

$N \ldots$ space dimension (here: $N = 2$)

$G(x_0) \ldots$ topological derivative of J at x_0
Overview: Topological Derivative

Idea:

Sensitivity of $\mathcal{J} = \mathcal{J}(\Omega) = \mathcal{J}(u(\Omega))$ w.r.t. insertion of hole $\omega_\varepsilon = x_0 + \varepsilon \omega$
(ω...unit disk (e.g.))

Topological asymptotic expansion

$\mathcal{J}(u(\Omega_\varepsilon)) - \mathcal{J}(u(\Omega)) = \varepsilon^N G(x_0) + o(\varepsilon^N)$

N... space dimension (here: $N = 2$)

$G(x_0)$... topological derivative of \mathcal{J} at x_0

$G(x_0) < 0 \implies \mathcal{J}(u(\Omega_\varepsilon)) < \mathcal{J}(u(\Omega))$ for ε small enough
Topological Derivative for Nonlinear Problem

Collaboration with Samuel Amstutz (Univ. Avignon, France)

References

- S. Amstutz, A. Bonnafé: Topological asymptotic analysis for a class of quasilinear elliptic equations (accepted in *J. Math. Pures Appl.*
Assumption (A1)

- \(\mathcal{J}(u_\varepsilon) - \mathcal{J}(u_0) = \langle \frac{\partial \mathcal{J}}{\partial u}(u_0), u_\varepsilon - u_0 \rangle + o(\|u_\varepsilon - u_0\|^2) \) or
- \(\mathcal{J}(u) = \mathcal{J}(u|_{\Omega \setminus \Omega_d}) \) where \(\Omega_d \) design subdomain

We make the following additional assumptions for \(\hat{\nu} \):

1. \(\hat{\nu} \in C^2(\mathbb{R}_0^+) \).
2. \(\hat{\nu}'(0) = 0 \).
3. There exist non-negative constants \(\tilde{c}_7, \tilde{c}_8, \tilde{c}', \tilde{c}'' \) such that the nonlinear function \(\hat{\nu} \) satisfies the relations

\[
|2 \hat{\nu}'(|\varphi|) + \hat{\nu}''(|\varphi|)| \varphi | | \leq \tilde{c}_7 \quad \forall \varphi \in \mathbb{R}^2,
\]
\[
|3 \hat{\nu}''(|\varphi|) + \hat{\nu}'''(|\varphi|)| \varphi | | \leq \tilde{c}_8 \quad \forall \varphi \in \mathbb{R}^2.
\]

\[
|\hat{\nu}'(|\varphi|)| \leq \tilde{c}' \quad \forall \varphi \in \mathbb{R}^2,
\]
\[
|\hat{\nu}''(|\varphi|)| \leq \tilde{c}'' \quad \forall \varphi \in \mathbb{R}^2.
\]

4. \(\delta := \inf_{s > 0} (\hat{\nu}'(s)s)/\hat{\nu}(s) > -\frac{1}{3} \)

Note: Assumptions are fulfilled for the realistic set of data used in all numerical experiments.
Outline

2 Topology Optimization

- Overview
- On/Off Method by Takahashi et al.
- **Topological Derivative for Nonlinear Magnetostatics**
 - Preliminaries
 - Variations at scale ε
 - Topological Asymptotic Expansion (1)
 - Variations at scale 1
 - Topological Asymptotic Expansion (2)
- Comparison with On/Off Sensitivity
- Computational Issues
- Numerical Experiments
Task: Compute topological asymptotic expansion for problem

\[
\min \mathcal{J}(u(\Omega))
\]

s.t. \(\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega) \)

\[
\nu(|\nabla u|) := \begin{cases}
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \\
\nu_0 & \text{in } \Omega_{\text{air}}
\end{cases}
\]
Task: Compute topological asymptotic expansion for problem

\[
\min \mathcal{J}(u(\Omega))
\]

s.t. \(\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega) \)

Unperturbed state problem

Find \(u_0 \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} T_0(\nabla u_0) \cdot \nabla \eta = \langle F, \eta \rangle
\]

for all \(\eta \in H^1_0(\Omega) \)

with \(T_\varepsilon(q) = \nu_\varepsilon(|q|)q \) (\(\varepsilon \geq 0 \)), where

\[
\nu(|\nabla u|) := \begin{cases}
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \\
\nu_0 & \text{in } \Omega_{air}
\end{cases}
\]
Task: Compute topological asymptotic expansion for problem

\[
\min \mathcal{J}(u(\Omega))
\]

s.t. \[
\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Unperturbed state problem

Find \(u_0 \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} T_0(\nabla u_0) \cdot \nabla \eta = \langle F, \eta \rangle
\]

for all \(\eta \in H^1_0(\Omega) \)

Perturbed state problem

Find \(u_\varepsilon \in H^1_0(\Omega) \)

\[
\int_{\Omega} T_\varepsilon(\nabla u_\varepsilon) \cdot \nabla \eta = \langle F, \eta \rangle
\]

for all \(\eta \in H^1_0(\Omega) \)

with \(T_\varepsilon(q) = \nu_\varepsilon(|q|) q \ (\varepsilon \geq 0) \), where

\[
\nu(|\nabla u|) := \begin{cases}
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \\
\nu_0 & \text{in } \Omega_{\text{air}}
\end{cases}
\]

\[
\nu_\varepsilon(|\nabla u|) := \begin{cases}
\nu_0 & \text{in } \omega_\varepsilon \\
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \setminus \omega_\varepsilon \\
\nu_0 & \text{in } \Omega_{\text{air}}
\end{cases}
\]
Task: Compute topological asymptotic expansion for problem

\[
\min J(u(\Omega)) \\
\text{s.t. } \int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Unperturbed state problem

Find \(u_0 \in H^1_0(\Omega) \) such that

\[
\int_{\Omega} T_0(\nabla u_0) \cdot \nabla \eta = \langle F, \eta \rangle
\]

for all \(\eta \in H^1_0(\Omega) \)

Perturbed state problem

Find \(u_\varepsilon \in H^1_0(\Omega) \)

\[
\int_{\Omega} T_\varepsilon(\nabla u_\varepsilon) \cdot \nabla \eta = \langle F, \eta \rangle
\]

for all \(\eta \in H^1_0(\Omega) \)

with \(T_\varepsilon(q) = \nu_\varepsilon(|q|)q \ (\varepsilon \geq 0) \), where

\[
\nu(|\nabla u|) := \begin{cases}
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \\
\nu_0 & \text{in } \Omega_{air}
\end{cases}
\]

\[
\nu_\varepsilon(|\nabla u|) := \begin{cases}
\nu_0 & \text{in } \omega_\varepsilon \\
\hat{\nu}(|\nabla u|) & \text{in } \Omega_f \setminus \overline{\omega_\varepsilon} \\
\nu_0 & \text{in } \Omega_{air}
\end{cases}
\]

We are interested in variation of direct state: \(u_\varepsilon - u_0 \)
Variation of Direct State \(u_\varepsilon - u_0 \)

\[
0 = \int_{\Omega} T_\varepsilon (\nabla u_\varepsilon) \cdot \nabla \eta - \int_{\Omega} T_0 (\nabla u_0) \cdot \nabla \eta \quad \Leftrightarrow
\]
Variation of Direct State \(u_\varepsilon - u_0 \)

\[
0 = \int_\Omega T_\varepsilon (\nabla u_\varepsilon) \cdot \nabla \eta - \int_\Omega T_0 (\nabla u_0) \cdot \nabla \eta \quad \Leftrightarrow
\]

Variation of direct state at scale \(\varepsilon \)

Find \(\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0 \) such that

\[
\int_\Omega (T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0)) \cdot \nabla \eta = -\int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0 \quad (*)
\]

where \(T_\varepsilon (q) := \nu_\varepsilon(|q|)q \) for \(q \in \mathbb{R}^2 \).
Variation of Direct State, \(u_\varepsilon - u_0 \), and Adjoint State \(v_\varepsilon \)

\[
0 = \int_\Omega T_\varepsilon (\nabla u_\varepsilon) \cdot \nabla \eta - \int_\Omega T_0 (\nabla u_0) \cdot \nabla \eta \quad \Leftrightarrow
\]

Variation of direct state at scale \(\varepsilon \)

Find \(\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0 \) such that

\[
\int_\Omega \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) \right) \cdot \nabla \eta = -\int_{\omega_\varepsilon} \left(\nu_0 - \nu(|\nabla u_0|) \right) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0 \quad (*)
\]

where \(T_\varepsilon (q) := \nu_\varepsilon (|q|) q \) for \(q \in \mathbb{R}^2 \).

Adjoint state at scale \(\varepsilon \)

For \(\varepsilon \geq 0 \), find \(v_\varepsilon \in V_0 \) such that

\[
\int_\Omega (DT_\varepsilon (\nabla u_0) \nabla \eta) \cdot \nabla v_\varepsilon = -\int_\Omega \frac{\partial J}{\partial u} (u_0) \eta \quad \forall \eta \in V_0 \quad (**)
\]
Variation of Direct State, $u_\varepsilon - u_0$, and of Adjoint State $v_\varepsilon - v_0$

$$0 = \int_\Omega T_\varepsilon(\nabla u_\varepsilon) \cdot \nabla \eta - \int_\Omega T_0(\nabla u_0) \cdot \nabla \eta \quad \iff$$

Variation of direct state at scale ε

Find $\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0$ such that

$$\int_\Omega (T_\varepsilon(\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon(\nabla u_0)) \cdot \nabla \eta = -\int_{\omega_\varepsilon} (v_0 - \hat{v}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0 \quad (*)$$

where $T_\varepsilon(q) := \nu_\varepsilon(|q|)q$ for $q \in \mathbb{R}^2$.

Adjoint state at scale ε

For $\varepsilon \geq 0$, find $v_\varepsilon \in V_0$ such that

$$\int_\Omega (DT_\varepsilon(\nabla u_0) \nabla \eta) \cdot \nabla v_\varepsilon = -\int_\Omega \frac{\partial J}{\partial u}(u_0) \eta \quad \forall \eta \in V_0 \quad (**)$$

Variation of adjoint state at scale ε

Find $\tilde{v}_\varepsilon := v_\varepsilon - v_0 \in V_0$ such that

$$\int_\Omega (DT_\varepsilon(\nabla u_0) \nabla \eta) \cdot \nabla \tilde{v}_\varepsilon = -\int_{\omega_\varepsilon} ((v_0 I - DT_0(\nabla u_0)) \nabla \eta) \cdot \nabla v_0 \quad \forall \eta \in V_0 \quad (***)$$
Outline

2 Topology Optimization

- Overview
- On/Off Method by Takahashi et al.
- Topological Derivative for Nonlinear Magnetostatics
 - Preliminaries
 - Variations at scale ε
 - Topological Asymptotic Expansion (1)
 - Variations at scale 1
 - Topological Asymptotic Expansion (2)
- Comparison with On/Off Sensitivity
- Computational Issues
- Numerical Experiments
Topological Asymptotic Expansion

We have

$$\mathcal{J}(u_\varepsilon) - \mathcal{J}(u_0) = \left\langle \frac{\partial \mathcal{J}}{\partial u}(u_0), u_\varepsilon - u_0 \right\rangle + o(\varepsilon^N)$$
Topological Asymptotic Expansion

We have

\[J(u_\varepsilon) - J(u_0) = \left\langle \frac{\partial J}{\partial u}(u_0), u_\varepsilon - u_0 \right\rangle + o(\varepsilon^N) \]

\[\overset{(**)}{=} - \int_{\Omega} DT_\varepsilon(\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_\varepsilon + o(\varepsilon^N) \]
Topological Asymptotic Expansion

We have

\[J(u_\varepsilon) - J(u_0) = \langle \frac{\partial J}{\partial u}(u_0), u_\varepsilon - u_0 \rangle + o(\varepsilon^N) \]

\[\text{(**) } - \int_\Omega DT_\varepsilon(\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_\varepsilon + o(\varepsilon^N) \]

\[\text{(***) } - \int_\Omega DT_\varepsilon(\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 + \int_{\Omega'} (\nu_0 I - DT_0(\nabla u_0)) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 \]

\[+ o(\varepsilon^N) \]
Topological Asymptotic Expansion

We have

\[J(u_\varepsilon) - J(u_0) = \langle \frac{\partial J}{\partial u}(u_0), u_\varepsilon - u_0 \rangle + o(\varepsilon^N) \]

\[(**\quad) - \int_\Omega DT_\varepsilon(\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_\varepsilon + o(\varepsilon^N) \]

\[(***) - \int_\Omega DT_\varepsilon(\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 + \int_{\omega_\varepsilon} (\nu_0 I - DT_0(\nabla u_0)) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 \]

\[+ \int_\Omega (T_\varepsilon(\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon(\nabla u_0)) \cdot \nabla v_0 \]

\[+ \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla v_0 \]

\[+ o(\varepsilon^N) \]
Topological Asymptotic Expansion

We have

\[J(u_\varepsilon) - J(u_0) = \left\langle \frac{\partial J}{\partial u}(u_0), u_\varepsilon - u_0 \right\rangle + o(\varepsilon^N) \]

\[
(\ast\ast) \quad - \int_\Omega DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla \nu_\varepsilon + o(\varepsilon^N)
\]

\[
(\ast\ast\ast) \quad - \int_\Omega DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla \nu_0 + \int_{\omega_\varepsilon} (\nu_0 I - DT_0(\nabla u_0)) \nabla \tilde{u}_\varepsilon \cdot \nabla \nu_0
\]

\[
+ \int_\Omega (T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0)) \cdot \nabla \nu_0
\]

\[
+ \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \nu_0 + \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \nu_\varepsilon
\]

\[
- \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \nu_\varepsilon + o(\varepsilon^N)
\]
Topological Asymptotic Expansion

We have

\[J(u_\varepsilon) - J(u_0) = \left\langle \frac{\partial J}{\partial u}(u_0), u_\varepsilon - u_0 \right\rangle + o(\varepsilon^N) \]

\((**) \quad - \int_\Omega DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_\varepsilon + o(\varepsilon^N) \)

\((***) \quad - \int_\Omega DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 + \int_{\omega_\varepsilon} (\nu_0 I - DT_0(\nabla u_0)) \nabla \tilde{u}_\varepsilon \cdot \nabla v_0 \]

\[+ \int_\Omega \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) \right) \cdot \nabla v_0 \]

\[+ \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla v_0 + \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla v_\varepsilon \]

\[- \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla v_\varepsilon + o(\varepsilon^N) \]
Topological Asymptotic Expansion

We have

\[\mathcal{J}(u_\varepsilon) - \mathcal{J}(u_0) = ... = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \]

with

\[
\begin{align*}
j_1(\varepsilon) &= \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot (\nabla \nu_0 + \nabla \tilde{\nu}_\varepsilon) \\
j_2(\varepsilon) &= \int_{\Omega} \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) - D T_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \right) \cdot (\nabla \nu_0 + \nabla \tilde{\nu}_\varepsilon) \\
&= : S_{\nabla u_0}^\varepsilon (\nabla \tilde{u}_\varepsilon)
\end{align*}
\]
Topological Asymptotic Expansion

We have

$$J(u_\varepsilon) - J(u_0) = ... = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N)$$

$$\equiv \varepsilon^N G(x_0) + o(\varepsilon^N)$$

with

$$j_1(\varepsilon) = \int_{\omega_\varepsilon} (\nu_0 - \hat{v}(|\nabla u_0|))\nabla u_0 \cdot (\nabla \nu_0 + \nabla \tilde{v}_\varepsilon)$$

$$j_2(\varepsilon) = \int_{\Omega} (T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) - DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon) \cdot (\nabla \nu_0 + \nabla \tilde{v}_\varepsilon)$$

$$= : S^\varepsilon_{\nabla u_0} (\nabla \tilde{u}_\varepsilon)$$
Topological Asymptotic Expansion

We have

$$J(u_\varepsilon) - J(u_0) = ... = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N)$$

$$= \varepsilon^N G(x_0) + o(\varepsilon^N)$$

with

$$j_1(\varepsilon) = \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(\vert \nabla u_0 \vert)) \nabla u_0 \cdot (\nabla \nu_0 + \nabla \tilde{\nu}_\varepsilon)$$

$$j_2(\varepsilon) = \int_{\Omega} \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) - DT_\varepsilon (\nabla u_0) \nabla \tilde{u}_\varepsilon \right) \cdot (\nabla \nu_0 + \nabla \tilde{\nu}_\varepsilon)$$

$$= : S_\varepsilon^{\nabla u_0} (\nabla \tilde{u}_\varepsilon)$$

It remains to show that there exist J_1, J_2 independent of ε such that

$$j_1(\varepsilon) = \varepsilon^N J_1 + o(\varepsilon^N)$$

and

$$j_2(\varepsilon) = \varepsilon^N J_2 + o(\varepsilon^N)$$
Outline

2 Topology Optimization

- Overview
- On/Off Method by Takahashi et al.
- Topological Derivative for Nonlinear Magnetostatics
 - Preliminaries
 - Variations at scale ε
 - Topological Asymptotic Expansion (1)
 - Variations at scale 1
 - Topological Asymptotic Expansion (2)
- Comparison with On/Off Sensitivity
- Computational Issues
- Numerical Experiments
Variation of Direct State: Approximations

Variation of direct state at scale ε

Find $\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0$ such that

$$\int_{\Omega} (T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0)) \cdot \nabla \eta = - \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0$$
Variation of Direct State: Approximations

Find $\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0$ such that

$$\int_{\Omega} (T_\varepsilon(\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon(\nabla u_0)) \cdot \nabla \eta = -\int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0$$

Approximation 1: replace function ∇u_0 by constant $U_0 := \nabla u_0(x_0)$
Variation of Direct State: Approximations

Variation of direct state at scale ε

Find $\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0$ such that

$$
\int_\Omega \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) \right) \cdot \nabla \eta = - \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0
$$

Approximation 1: replace function ∇u_0 by constant $U_0 := \nabla u_0(x_0)$

Approximation 2: Change of scale
Transform domain with hole of size ε
Transform domain with hole of size ε

to large domain with hole of unit size
Transform domain with hole of size ε

Ω_ε

ω_ε

to large domain with hole of unit size

$B(0,1)$

\mathbb{R}^2

and send outer boundary to infinity (Approximation!)
Variation of Direct State: Approximations

Variation of direct state at scale ε

Find $\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0$ such that

$$
\int_{\Omega} \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) \right) \cdot \nabla \eta = - \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0
$$

Approximation 1: replace function ∇u_0 by constant $U_0 := \nabla u_0(x_0)$

Approximation 2: Change of scale
Variation of Direct State: Approximations

Variation of direct state at scale \(\varepsilon \)

Find \(\tilde{u}_\varepsilon := u_\varepsilon - u_0 \in V_0 \) such that

\[
\int_{\Omega} \left(T_\varepsilon (\nabla u_0 + \nabla \tilde{u}_\varepsilon) - T_\varepsilon (\nabla u_0) \right) \cdot \nabla \eta = - \int_{\omega_\varepsilon} (\nu_0 - \hat{\nu}(|\nabla u_0|)) \nabla u_0 \cdot \nabla \eta \quad \forall \eta \in V_0
\]

Approximation 1: replace function \(\nabla u_0 \) by constant \(U_0 := \nabla u_0(x_0) \)

Approximation 2: Change of scale

Variation of direct state at scale 1

Find \(H \in \mathcal{H}(\mathbb{R}^N) \) such that

\[
\int_{\mathbb{R}^N} \left(\tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) \right) \cdot \nabla \eta = - \int_{\omega} (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
\]
Variation of Direct State at Scale 1

Find $H \in \mathcal{H}(\mathbb{R}^N)$ such that

$$
\int_{\mathbb{R}^N} \left(\tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) \right) \cdot \nabla \eta = - \int_{\omega} (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
$$

(2)

where $\omega = B(0, 1)$, $\mathcal{H}(\mathbb{R}^N) := \{ u \in \mathcal{D}'(\mathbb{R}^N) : w_2 u \in L^2(\mathbb{R}^N), \nabla u \in \mathbb{R}^N \}/\mathbb{R}$ and

$$
\tilde{T}(W) = \begin{cases}
\nu_0 W & \text{in } \omega \\
\hat{\nu}(|W|) W & \text{in } \mathbb{R}^N \setminus \bar{\omega}
\end{cases}
$$
Variation of Direct State at Scale 1

Find $H \in \mathcal{H}(\mathbb{R}^N)$ such that

$$
\int_{\mathbb{R}^N} \left(\tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) \right) \cdot \nabla \eta = -\int_{\omega} (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
$$

(2)

where $\omega = B(0, 1)$, $\mathcal{H}(\mathbb{R}^N) := \{ u \in \mathcal{D}'(\mathbb{R}^N) : w_2 u \in L^2(\mathbb{R}^N), \nabla u \in \mathbb{R}^N \}/\mathbb{R}$ and

$$
\tilde{T}(W) = \begin{cases}
\nu_0 W & \text{in } \omega \\
\hat{\nu}(|W|) W & \text{in } \mathbb{R}^N \setminus \omega
\end{cases}
$$

Theorem

There exists a unique solution $H \in \mathcal{H}(\mathbb{R}^N)$ to problem (2).

Proof: Minty-Browder Theorem
Variation of Direct State at Scale 1

Find $H \in \mathcal{H}(\mathbb{R}^N)$ such that

$$\int_{\mathbb{R}^N} \left(\tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) \right) \cdot \nabla \eta = -\int_{\omega} \left(\nu_0 - \hat{\nu}(|U_0|) \right) U_0 \cdot \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N) \quad (2)$$

where $\omega = B(0, 1)$, $\mathcal{H}(\mathbb{R}^N) := \{u \in \mathcal{D}'(\mathbb{R}^N) : w_2 u \in L^2(\mathbb{R}^N), \nabla u \in \mathbb{R}^N \}/\mathbb{R}$ and

$$\tilde{T}(W) = \begin{cases} \nu_0 W & \text{in } \omega \\ \hat{\nu}(|W|) W & \text{in } \mathbb{R}^N \setminus \bar{\omega} \end{cases}$$

Proposition

Let $N = 2$ and $\omega = B(0, 1)$. Then there exists \tilde{H} of the class $H \in \mathcal{H}(\mathbb{R}^N)$ and $\tau > \frac{N}{2} - 1$

$$\tilde{H}(y) = O \left(|y|^{-\tau} \right) \text{ as } |y| \to \infty$$

Sketch of proof: H is defined via $QH = 0$

- Show that a function P with the desired behavior at infinity is a supersolution and 0 is a subsolution, i.e., $\langle Q \ 0, \eta \rangle \leq 0$ and $0 \leq \langle Q \ P, \eta \rangle \ \forall \eta \in \mathcal{V}(\mathbb{R}^N)$, $\text{supp}(\eta) \subset \mathbb{R}_+^N$, $\eta \geq 0$ a.e.
- Show that this implies that $0 \leq \tilde{H}(x) \leq P(x)$ for almost all $x \in \mathbb{R}_+^N$
Approximations for Adjoint State

- $\nabla u_0 \quad \leadsto \quad U_0$
- $\nabla v_0 \quad \leadsto \quad V_0 := \nabla v_0(x_0)$
- Change of scale

Variation of adjoint state at scale 1

Find $K \in \mathcal{H}(\mathbb{R}^N)$ such that

$$
\int_{\mathbb{R}^N} (D\tilde{T}(U_0)\nabla \eta) \cdot \nabla K = -\int_{\omega} ((\nu_0 I - DT_0(U_0))\nabla \eta) \cdot V_0 \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
$$

(3)
Approximations for Adjoint State

- \(\nabla u_0 \rightsquigarrow U_0 \)
- \(\nabla v_0 \rightsquigarrow V_0 := \nabla v_0(x_0) \)
- Change of scale

Variation of adjoint state at scale 1

Find \(K \in \mathcal{H}(\mathbb{R}^N) \) such that

\[
\int_{\mathbb{R}^N} (D \tilde{T}(U_0) \nabla \eta) \cdot \nabla K = - \int_{\omega} ((\nu_0 I - DT_0(U_0)) \nabla \eta) \cdot V_0 \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
\]

Theorem

There exists a unique solution \(K \in \mathcal{H}(\mathbb{R}^N) \) to problem (3).
Approximations for Adjoint State

- $\nabla u_0 \rightsquigarrow U_0$
- $\nabla v_0 \rightsquigarrow V_0 := \nabla v_0(x_0)$
- Change of scale

Variation of adjoint state at scale 1

Find $K \in \mathcal{H}(\mathbb{R}^N)$ such that

$$\int_{\mathbb{R}^N} (D\tilde{T}(U_0) \nabla \eta) \cdot \nabla K = -\int_\omega (\nu_0 I - DT_0(U_0)) \nabla \eta \cdot V_0 \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N) \quad (3)$$

Theorem

There exists a unique solution $K \in \mathcal{H}(\mathbb{R}^N)$ to problem (3).

Proposition

$$\tilde{K}(y) = O(|y|^{1-N}) \text{ as } |y| \to \infty$$
Outline

2 Topology Optimization

- Overview
- On/Off Method by Takahashi et al.
- Topological Derivative for Nonlinear Magnetostatics
 - Preliminaries
 - Variations at scale ε
 - Topological Asymptotic Expansion (1)
 - Variations at scale 1
 - Topological Asymptotic Expansion (2)
- Comparison with On/Off Sensitivity
- Computational Issues
- Numerical Experiments
Expansion of linear Term $j_1(\varepsilon)$

Recall: $\mathcal{J}(\Omega_\varepsilon) - \mathcal{J}(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \overset{!}{=} \varepsilon^N G(x_0) + o(\varepsilon^N)$

Following the approximation steps, we define

$$J_1 := (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \int_\omega V_0 + \nabla K$$
Recall: \(J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) = \varepsilon^N G(x_0) + o(\varepsilon^N) \)

Following the approximation steps, we define

\[
J_1 := (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \int_\omega V_0 + \nabla K
\]

Proposition

\[
j_1(\varepsilon) = \varepsilon^N J_1 + o(\varepsilon^N)
\]
Recall: \(J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \overset{!}{=} \varepsilon^N G(x_0) + o(\varepsilon^N) \)

Following the approximation steps, we define

\[
J_1 := (\nu_0 - \hat{\nu}(|U_0|)) U_0 \cdot \int_\omega V_0 + \nabla K
\]

Proposition

\[
j_1(\varepsilon) = \varepsilon^N J_1 + o(\varepsilon^N)
\]
Expansion of linear Term $j_1(\varepsilon)$

Recall: $J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \triangleq \varepsilon^N G(x_0) + o(\varepsilon^N)$

Remark

Because of the linearity of the equation defining K, also the mapping

$$V_0 \mapsto (\nu_0 - \hat{\nu}(|U_0|)) \int_\omega V_0 + \nabla K$$

is linear, thus there exists a polarization matrix $\mathcal{P} = \mathcal{P}(\omega, U_0)$ s.t.

$$J_1 = U_0^T \mathcal{P}(\omega, U_0) V_0$$
Expansion of Nonlinear Term $j_2(\varepsilon)$

Recall: $J(\Omega_{\varepsilon}) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \overset{!}{=} \varepsilon^N G(x_0) + o(\varepsilon^N)$
Expansion of Nonlinear Term $j_2(\varepsilon)$

Recall: $J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \overset{!}{=} \varepsilon^N G(x_0) + o(\varepsilon^N)$

Following the approximation steps, we define

$$J_2 := \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)$$

where $S_{U_0}(\nabla H) := \tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) - D\tilde{T}(U_0)\nabla H$
Recall: \(J(\Omega_\varepsilon) - J(\Omega) \equiv j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) \equiv \varepsilon^N G(x_0) + o(\varepsilon^N) \)

Following the approximation steps, we define

\[J_2 := \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K) \]

where \(S_{U_0}(\nabla H) := \tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) - D\tilde{T}(U_0) \nabla H \)

Proposition

\[j_2(\varepsilon) = \varepsilon^N J_2 + o(\varepsilon^N) \]
Expansion of Nonlinear Term $j_2(\varepsilon)$

Recall: $\mathcal{J}(\Omega_\varepsilon) - \mathcal{J}(\Omega) = \sqrt{j_1(\varepsilon)} + \sqrt{j_2(\varepsilon)} + o(\varepsilon^N) = \varepsilon^N G(x_0) + o(\varepsilon^N)$

Following the approximation steps, we define

$$J_2 := \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)$$

where $S_{U_0}(\nabla H) := \tilde{T}(U_0 + \nabla H) - \tilde{T}(U_0) - D\tilde{T}(U_0)\nabla H$

Proposition

$$j_2(\varepsilon) = \varepsilon^N J_2 + o(\varepsilon^N)$$
Final Result

Recall: \(J(\Omega_{\varepsilon}) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) = \varepsilon^N G(x_0) + o(\varepsilon^N) \)

Theorem (Amstutz, G., 2016)

Let \(J \) and \(\hat{\nu} \) satisfy Assumption (A1). Then the topological derivative for our optimization problem reads

\[
G(x_0) = U_0^T P V_0 + \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)
\]
Final Result

Recall: $J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) = \varepsilon^N G(x_0) + o(\varepsilon^N)$

Theorem (Amstutz, G., 2016)

Let J and $\hat{\nu}$ satisfy Assumption (A1). Then the topological derivative for our optimization problem reads

$$G(x_0) = U_0^T \mathcal{P} V_0 + \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)$$

Note:

- All the steps taken were for the case where we introduce linear material (air; $\nu = \nu_0$) inside nonlinear (iron; $\nu = \hat{\nu}(|\nabla u|)$),

 $$G = G^{f\rightarrow air}$$
Final Result

Recall: \(J(\Omega_\varepsilon) - J(\Omega) = j_1(\varepsilon) + j_2(\varepsilon) + o(\varepsilon^N) = \varepsilon^N G(x_0) + o(\varepsilon^N) \)

Theorem (Amstutz, G., 2016)

Let \(J \) and \(\hat{\nu} \) satisfy Assumption (A1). Then the topological derivative for our optimization problem reads

\[
G(x_0) = U_0^T \mathcal{P} V_0 + \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)
\]

Note:

- All the steps taken were for the case where we introduce linear material (air; \(\nu = \nu_0 \)) inside nonlinear (iron; \(\nu = \hat{\nu}(|\nabla u|) \)),

\[
G = G^{f \rightarrow air}
\]

- The same steps have to be conducted for the reverse scenario (introducing iron inside air region), to obtain

\[
G = G^{air \rightarrow f}
\]
Outline

1 Motivation and Problem Description

2 Topology Optimization
 - Overview
 - On/Off Method by Takahashi et al.
 - Topological Derivative for Nonlinear Magnetostatics
 - Comparison with On/Off Sensitivity
 - Computational Issues
 - Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
On/Off Sensitivity vs. Topological Derivative

- On/Off sens: What happens to J when ν is perturbed a little bit
- Top. Der.: What happens to J when hole is introduced ($\hat{\nu} \leadsto \nu_0$)
On/Off Sensitivity vs. Topological Derivative

- On/Off sens: What happens to J when ν is perturbed a little bit
- Top. Der.: What happens to J when hole is introduced ($\hat{\nu} \sim \nu_0$)

Comparison:

<table>
<thead>
<tr>
<th></th>
<th>$\frac{1}{T_k} \frac{dJ}{d\nu_k}$ (On/Off)</th>
<th>$G(x_0)$ (Top. Der.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear ($\hat{\nu} = \nu_1$)</td>
<td>$U_0^T V_0$</td>
<td>$C U_0^T V_0$</td>
</tr>
<tr>
<td>nonlinear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

$$C^{f\rightarrow\text{air}} \neq C^{\text{air}\rightarrow f}$$

(actually, $C^{f\rightarrow\text{air}} = -\frac{\nu_1}{\nu_0} C^{\text{air}\rightarrow f}$)

Difference is not captured in “On/Off sensitivity”
On/Off Sensitivity vs. Topological Derivative

- On/Off sens: What happens to \mathcal{J} when ν is perturbed a little bit
- Top. Der.: What happens to \mathcal{J} when hole is introduced ($\hat{\nu} \rightsquigarrow \nu_0$)

Comparison:

| | $\frac{1}{|T_k|} \left| \frac{d}{d \nu_k} \mathcal{J} \right|$ (On/Off) | $G(x_0)$ (Top. Der.) |
|-----------|---|---------------------|
| Linear ($\hat{\nu} = \nu_1$) | $U_0^T V_0$ | $C U_0^T V_0$ |
| Nonlinear | $U_0^T V_0$ | $U_0^T \mathcal{P}(U_0) V_0$ $+ \int_{\mathbb{R}^2} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K)$ |

Note:

$C_{\text{f$\rightarrow$air}} \neq C_{\text{air$\rightarrow$f}}$
(actually, $C_{\text{f$\rightarrow$air}} = -\frac{\nu_1}{\nu_0} C_{\text{air\rightarrowf}}$)

$\mathcal{P}_{\text{f$\rightarrow$air}} \neq \mathcal{P}_{\text{air\rightarrowf}}$

Difference is not captured in “On/Off sensitivity”
On/Off Sensitivity vs. Topological Derivative

- \mathcal{P} gives **right scaling** between introduction and removal of material

Note: $G^{f\rightarrow \text{air}} \neq G^{\text{air}\rightarrow f}$, difference cannot be captured by $\frac{d \mathcal{J}}{d \nu_k}$!

Initial design, $\mathcal{J}(u) = 0.450$

$\chi_{\Omega_f} G^{f\rightarrow \text{air}} - \chi_{\Omega_{\text{air}}} G^{\text{air}\rightarrow f}$

$\mathcal{J}(u) = 0.436$

$\mathcal{J}(u) = 0.406$
Outline

1 Motivation and Problem Description

2 Topology Optimization
 ■ Overview
 ■ On/Off Method by Takahashi et al.
 ■ Topological Derivative for Nonlinear Magnetostatics
 ■ Comparison with On/Off Sensitivity
 ■ Computational Issues
 ■ Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Derivation of Polarization Matrix

\[
V_0 \mapsto (\nu_0 - \hat{\nu}(|U_0|)) \int\limits_{\omega} V_0 + \nabla K \overset{1}{=} \mathcal{P}V_0
\]

where \(K \in \mathcal{H}(\mathbb{R}^N)\) is the solution to:

\[
\int_{\mathbb{R}^N} DT_0(U_0) \nabla K \cdot \nabla \eta = -\int_{\omega} (\nu_0 I - DT_0(U_0))(V_0 + \nabla K) \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N)
\]
Derivation of Polarization Matrix

\[V_0 \leftrightarrow (\nu_0 - \hat{\nu}(|U_0|)) \int_{\omega} V_0 + \nabla K = \mathcal{P} V_0 \]

where \(K \in \mathcal{H}(\mathbb{R}^N) \) is the solution to:

\[\int_{\mathbb{R}^N} DT_0(U_0) \nabla K \cdot \nabla \eta = - \int_{\omega} (\nu_0 I - DT_0(U_0))(V_0 + \nabla K) \nabla \eta \quad \forall \eta \in \mathcal{H}(\mathbb{R}^N) \]

Solve transmission problem by a

- coordinate transformation \(y = DT_0(U_0)^{1/2} x \)
- special ansatz in elliptic coordinates

for \(V_0 = (1, 0)^T \mapsto K_{(1,0)} \) and

\(V_0 = (0, 1)^T \mapsto K_{(0,1)} \) and insert

\[
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\leftrightarrow (\nu_0 - \hat{\nu}(|U_0|)) \int_{\omega} \begin{pmatrix}
1 \\
0
\end{pmatrix} + \nabla K_{(1,0)} =:
\begin{pmatrix}
p_{11} \\
p_{21}
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\leftrightarrow (\nu_0 - \hat{\nu}(|U_0|)) \int_{\omega} \begin{pmatrix}
0 \\
1
\end{pmatrix} + \nabla K_{(0,1)} =:
\begin{pmatrix}
p_{12} \\
p_{22}
\end{pmatrix}
\]
Derivation of Polarization Matrix

\[V_0 \leftrightarrow (\nu_0 - \hat{\nu}(|U_0|)) \int_\omega V_0 + \nabla K = \mathcal{P} V_0 \]

Proposition

Let \(U_0 = R_\varphi(|U_0|, 0)^T \) and denote \(\alpha := \hat{\nu}(|U_0|) \) and \(\beta = \hat{\nu}'(|U_0|)|U_0| \). Then it holds that

\[J_1 = U_0^T \mathcal{P} V_0 \]

with

\[
\mathcal{P} = \mathcal{P}^{f \rightarrow \text{air}}(\omega, DT_0(U_0)) = (\nu_0 - \alpha)|\omega| R_\varphi \begin{pmatrix}
\frac{\alpha + \beta + \sqrt{\alpha(\alpha + \beta)}}{\nu_0 + \sqrt{\alpha(\alpha + \beta)}} & 0 \\
0 & \frac{\alpha + \sqrt{\alpha(\alpha + \beta)}}{\nu_0 + \sqrt{\alpha(\alpha + \beta)}}
\end{pmatrix} R_\varphi^T
\]
Derivation of Polarization Matrix

\[V_0 \leftrightarrow (\nu_0 - \hat{\nu}(|U_0|)) \int_{\omega} V_0 + \nabla K = \mathcal{P} V_0 \]

Proposition

Let \(U_0 = R_\varphi(|U_0|, 0)^T \) and denote \(\alpha := \hat{\nu}(|U_0|) \) and \(\beta = \hat{\nu}'(|U_0|)|U_0| \). Then it holds that

\[J_1 = U_0^T \mathcal{P} V_0 \]

with

\[
\mathcal{P} = \mathcal{P}_{\text{air}}^f (\omega, D T_0(U_0)) = (\nu_0 - \alpha)|\omega| R_\varphi \left(\begin{array}{cc}
\frac{\alpha + \beta + \sqrt{\alpha (\alpha + \beta)}}{\nu_0 + \sqrt{\alpha (\alpha + \beta)}} & 0 \\
0 & \frac{\alpha + \sqrt{\alpha (\alpha + \beta)}}{\nu_0 + \sqrt{\alpha (\alpha + \beta)}}
\end{array} \right) R_\varphi^T
\]

Remark

In Case II, we have

\[
\mathcal{P} = \mathcal{P}_{\text{air}}^f (\omega, D T_0(U_0)) = (\alpha - \nu_0) |\omega| R_\varphi \left(\begin{array}{cc}
\frac{2\nu_0}{\nu_0 + \alpha + \beta} & 0 \\
0 & \frac{2\nu_0}{\nu_0 + \alpha}
\end{array} \right) R_\varphi^T.
\]
Computational Issues

Topological derivative

\[G(x_0) = U_0^T \mathcal{P} V_0 + \int_{\mathbb{R}^N} S_{U_0}(\nabla H) \cdot (V_0 + \nabla K) \]

Problems:

- \(H = H(U_0) = H(\nabla u(x_0)) \) solution of nonlinear problem on \(\mathbb{R}^N \)
- want to have \(G(x_0) \) for all points \(x_0 \) in design domain
 \(\implies \) need to solve nonlinear problem for \(H \) for every possible \(U_0 = \nabla u(x_0) \)
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S U_0(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(RU_0, RV_0) = J_2(U_0, V_0) \) for rotation matrix \(R \)
- \(J_2 \) linear in \(V_0 \)
\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(R \cdot U_0, R \cdot V_0) = J_2(U_0, V_0) \) for \(R \) ... rotation matrix
- \(J_2 \) linear in \(V_0 \)

\[J_2(U_0, V_0) = J_2(t \cdot R_\theta \cdot e_1, s \cdot R_\varphi \cdot e_1) \]

for \(U_0 = t \cdot R_\theta \cdot e_1 \) and \(V_0 = s \cdot R_\varphi \cdot e_1 \) we have
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(RU_0, RV_0) = J_2(U_0, V_0) \) for \(R \) … rotation matrix
- \(J_2 \) linear in \(V_0 \)

\[
\Longrightarrow \text{for } U_0 = t R_\theta e_1 \text{ and } V_0 = s R_\varphi e_1 \text{ we have}
\]
\[
J_2(U_0, V_0) = J_2(t R_\theta e_1, s R_\varphi e_1) = J_2(t e_1, s R_\varphi - \theta e_1)
\]
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(R \ U_0, R \ V_0) = J_2(U_0, V_0) \) for \(R \) rotation matrix
- \(J_2 \) linear in \(V_0 \)

\[\text{for } U_0 = t \ R_\theta \ e_1 \text{ and } V_0 = s \ R_\varphi \ e_1 \text{ we have} \]

\[J_2(U_0, V_0) = J_2(t \ R_\theta \ e_1, s \ R_\varphi \ e_1) \]
\[= J_2(t \ e_1, s \ R_\varphi - \theta \ e_1) \]
\[= J_2(t \ e_1, s \ \cos(\varphi - \theta) \ e_1 + s \ \sin(\varphi - \theta) \ e_2) \]
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(RU_0, RV_0) = J_2(U_0, V_0) \) for \(R \ldots \) rotation matrix
- \(J_2 \) linear in \(V_0 \)

\[\Rightarrow \text{for } U_0 = t\, R_\theta \, e_1 \text{ and } V_0 = s\, R_\varphi \, e_1 \text{ we have} \]

\[J_2(U_0, V_0) = J_2(t\, R_\theta \, e_1, s\, R_\varphi \, e_1) \]
\[= J_2(t\, e_1, s\, R_\varphi - \theta \, e_1) \]
\[= J_2(t\, e_1, s\, \cos(\varphi - \theta)\, e_1 + s\, \sin(\varphi - \theta)\, e_2) \]
\[= s\, \cos(\varphi - \theta)\, J_2(t\, e_1, e_1) + s\, \sin(\varphi - \theta)\, J_2(t\, e_1, e_2) \]
Computational Issues

\[J_2 = J_2(U_0, V_0) = \int_{\mathbb{R}^N} S_{U_0}(\nabla H(U_0)) \cdot (V_0 + \nabla K(U_0, V_0)) \]

- \(J_2(R U_0, R V_0) = J_2(U_0, V_0) \) for \(R \ldots \) rotation matrix
- \(J_2 \) linear in \(V_0 \)

\[\Rightarrow \text{for } U_0 = t R_{\theta} e_1 \text{ and } V_0 = s R_{\varphi} e_1 \text{ we have} \]

\[J_2(U_0, V_0) = J_2(t R_{\theta} e_1, s R_{\varphi} e_1) \]
\[= J_2(t e_1, s R_{\varphi-\theta} e_1) \]
\[= J_2(t e_1, s \cos(\varphi - \theta) e_1 + s \sin(\varphi - \theta) e_2) \]
\[= s \cos(\varphi - \theta) J_2(t e_1, e_1) + s \sin(\varphi - \theta) J_2(t e_1, e_2) \]

\[\Rightarrow \text{Pre-compute } J_2(t e_1, e_i) \text{ for typical values of } t = |U_0| \text{ and interpolate to evaluate} \]
\[J_2(U_0, V_0) \]
Outline

1 Motivation and Problem Description

2 Topology Optimization
 ■ Overview
 ■ On/Off Method by Takahashi et al.
 ■ Topological Derivative for Nonlinear Magnetostatics
 ■ Comparison with On/Off Sensitivity
 ■ Computational Issues
 ■ Numerical Experiments

3 Shape Optimization

4 A Locally Modified Finite Element Method

5 Application to Electric Motor

6 Conclusion & Outlook
Computation of Topological Derivative

- Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: H_h for $U_0 = (0.1, 0)^T$ in case I
Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: $K_{h,10}$ for $U_0 = (0.1, 0)^T$ in case I
Computation of Topological Derivative

- Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: $K_{h,01}$ for $U_0 = (0.1, 0)^T$ in case I
Computation of Topological Derivative

- Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: H_h for $U_0 = (0.1, 0)^T$ in case II
Computation of Topological Derivative

- Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: $K_{h,10}$ for $U_0 = (0.1, 0)^T$ in case II
Approximate unbounded domain by disk of radius 1000 with homogeneous Dirichlet BCs

Figure: $K_{h,01}$ for $U_0 = (0.1, 0)^T$ in case II
Computation of Topological Derivative

Figure: $J_1(\|U_0\|, \varphi - \theta)$ in case I, order of magnitude: 10^6
Computation of Topological Derivative

Figure: $J_2(|U_0|, \varphi - \theta)$ in case I, order of magnitude: 1

$\Longrightarrow J_2$ negligible compared to J_1 in this application
Computation of Topological Derivative

Figure: $J_1(|U_0|, \varphi - \theta)$ in case II, order of magnitude: 10^7
Figure: $J_2(|U_0|, \varphi - \theta)$ in case II, order of magnitude: 1

$\implies J_2$ negligible compared to J_1 in this application
Algorithm

Represent design by level set function ψ:

$$
\psi(x) > 0 \Leftrightarrow x \in \Omega_f \\
\psi(x) < 0 \Leftrightarrow x \in \Omega_{air}
$$

Generalized topological derivative:

$$
\tilde{G}_\psi(x) := \begin{cases}
G^{f \rightarrow air}(x) & x \in \Omega_f \\
-G^{air \rightarrow f}(x) & x \in \Omega_{air}
\end{cases}
$$

Sufficient optimality condition: $\psi = \tilde{G}_\psi$
Algorithm

Represent design by level set function ψ:

$$\begin{align*}
\psi(x) > 0 & \iff x \in \Omega_f \\
\psi(x) < 0 & \iff x \in \Omega_{\text{air}}
\end{align*}$$

Generalized topological derivative:

$$\tilde{G}_\psi(x) := \begin{cases}
G^{f \rightarrow \text{air}}(x) & x \in \Omega_f \\
-G^{\text{air} \rightarrow f}(x) & x \in \Omega_{\text{air}}
\end{cases}$$

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Proof:

Let $\hat{x} \in \Omega_f$. Then

$$0 < \psi(\hat{x}) = \tilde{G}_\psi(\hat{x}) = G^{f \rightarrow \text{air}}(\hat{x}),$$

thus, introducing air at \hat{x} will yield an increase of J.

Analogous argument for $\hat{x} \in \Omega_{\text{air}}$.

\square
Algorithm

Represent design by level set function ψ:

$$\psi(x) > 0 \iff x \in \Omega_f$$
$$\psi(x) < 0 \iff x \in \Omega_{air}$$

Generalized topological derivative:

$$\tilde{G}_\psi(x) := \begin{cases} G^{f \rightarrow \text{air}}(x) & x \in \Omega_f \\ -G^{\text{air} \rightarrow f}(x) & x \in \Omega_{air} \end{cases}$$

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) Initialization: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$

(ii) Set $\theta_k = \arccos \left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right)$ and

$$\psi_{k+1} = \frac{1}{\sin \theta_k} \left[\sin((1 - \kappa_k)\theta_k) \psi_k + \sin(\kappa_k \theta_k) \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right]$$

where $\kappa_k = \max\{1, 1/2, 1/4 \ldots\}$ such that $\mathcal{J}(\psi_{k+1}) < \mathcal{J}(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)
Algorithm

Represent design by level set function ψ:

\[
\psi(x) > 0 \iff x \in \Omega_f \\
\psi(x) < 0 \iff x \in \Omega_{air}
\]

Generalized topological derivative:

\[
\tilde{G}_\psi(x) := \begin{cases}
G^{f \rightarrow \text{air}}(x) & x \in \Omega_f \\
-G^{\text{air} \rightarrow f}(x) & x \in \Omega_{air}
\end{cases}
\]

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) **Initialization**: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$

(ii) Set $\theta_k = \arccos\left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|}\right)$ and

\[
\psi_{k+1} = \frac{1}{\sin\theta_k} \left[\sin((1 - \kappa_k)\theta_k) \psi_k + \sin(\kappa_k\theta_k) \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right]
\]

where $\kappa_k = \max\{1, 1/2, 1/4 \ldots\}$ such that $J(\psi_{k+1}) < J(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Algorithm

Represent design by level set function ψ:

$$
\psi(x) > 0 \iff x \in \Omega_f \\
\psi(x) < 0 \iff x \in \Omega_{\text{air}}
$$

Generalized topological derivative:

$$
\tilde{G}_\psi(x) := \begin{cases}
G^{f \rightarrow \text{air}}(x) & x \in \Omega_f \\
-G^{\text{air} \rightarrow f}(x) & x \in \Omega_{\text{air}}
\end{cases}
$$

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) **Initialization**: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$

(ii) Set $\theta_k = \arccos \left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right)$ and

$$
\psi_{k+1} = \frac{1}{\sin \theta_k} \left[\sin((1 - \kappa_k) \theta_k) \psi_k + \sin(\kappa_k \theta_k) \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right]
$$

where $\kappa_k = \max\{1, 1/2, 1/4 \ldots \}$ such that $\mathcal{J}(\psi_{k+1}) < \mathcal{J}(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Algorithm

Represent design by level set function ψ:

\[\psi(x) > 0 \iff x \in \Omega_f \]
\[\psi(x) < 0 \iff x \in \Omega_{air} \]

Generalized topological derivative:

\[\tilde{G}_\psi(x) := \begin{cases} G^{f \to \text{air}}(x) & x \in \Omega_f \\ -G^{\text{air} \to f}(x) & x \in \Omega_{air} \end{cases} \]

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) Initialization: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_ψ_0 and set $k = 0$

(ii) Set $\theta_k = \arccos \left(\psi_k, \frac{\tilde{G}_\psi_k}{\|\tilde{G}_\psi_k\|} \right)$ and

\[\psi_{k+1} = \frac{1}{\sin \theta_k} \left[\sin((1 - \kappa_k) \theta_k) \psi_k + \sin(\kappa_k \theta_k) \frac{\tilde{G}_\psi_k}{\|\tilde{G}_\psi_k\|} \right] \]

where $\kappa_k = \max\{1, 1/2, 1/4 \ldots \}$ such that $J(\psi_{k+1}) < J(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Algorithm

Represent design by level set function ψ:

\[
\begin{align*}
\psi(x) > 0 & \iff x \in \Omega_f \\
\psi(x) < 0 & \iff x \in \Omega_{\text{air}}
\end{align*}
\]

Generalized topological derivative:

\[
\tilde{G}_\psi(x) := \begin{cases}
G^{f \to \text{air}}(x) & x \in \Omega_f \\
- G^{\text{air} \to f}(x) & x \in \Omega_{\text{air}}
\end{cases}
\]

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) **Initialization**: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$.

(ii) Set $\theta_k = \arccos\left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|}\right)$ and

\[
\psi_{k+1} = \frac{1}{\sin\theta_k} \left[\sin((1 - \kappa_k)\theta_k) \psi_k + \sin(\kappa_k\theta_k) \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right]
\]

where $\kappa_k = \max\{1, 1/2, 1/4, \ldots\}$ such that $\mathcal{J}(\psi_{k+1}) < \mathcal{J}(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Algorithm

Represent design by level set function ψ:

$\psi(x) > 0 \iff x \in \Omega_f$

$\psi(x) < 0 \iff x \in \Omega_{air}$

Generalized topological derivative:

$\tilde{G}_\psi(x) := \begin{cases} G^{f\rightarrow{air}}(x) & x \in \Omega_f \\ -G^{air\rightarrow{f}}(x) & x \in \Omega_{air} \end{cases}$

Sufficient optimality condition: $\psi = \tilde{G}_\psi$

Level Set Algorithm

(i) **Initialization**: Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$

(ii) Set $\theta_k = \arccos \left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|{\tilde{G}_{\psi_k}}\|} \right)$ and

$\psi_{k+1} = \frac{1}{\sin \theta_k} \left[\sin ((1 - \kappa_k)\theta_k) \psi_k + \sin (\kappa_k \theta_k) \frac{\tilde{G}_{\psi_k}}{\|{\tilde{G}_{\psi_k}}\|} \right]$ where $\kappa_k = \max\{1, 1/2, 1/4 \ldots \}$ such that $J(\psi_{k+1}) < J(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Algorithm

Represent design by level set function ψ:

$$
\psi(x) > 0 \iff x \in \Omega_f \\
\psi(x) < 0 \iff x \in \Omega_{air}
$$

Generalized topological derivative:

$$
\tilde{G}_{\psi}(x) := \begin{cases}
G_{f \rightarrow air}^f(x) & x \in \Omega_f \\
-G_{air \rightarrow f}^f(x) & x \in \Omega_{air}
\end{cases}
$$

Sufficient optimality condition: $\psi = \tilde{G}_{\psi}$

Level Set Algorithm

(i) **Initialization:** Choose ψ_0 with $\|\psi_0\| = 1$, compute \tilde{G}_{ψ_0} and set $k = 0$

(ii) Set $\theta_k = \arccos\left(\psi_k, \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|}\right)$ and

$$
\psi_{k+1} = \frac{1}{\sin\theta_k} \left[\sin((1 - \kappa_k)\theta_k) \psi_k + \sin(\kappa_k\theta_k) \frac{\tilde{G}_{\psi_k}}{\|\tilde{G}_{\psi_k}\|} \right]
$$

where $\kappa_k = \max\{1, 1/2, 1/4 \ldots\}$ such that $J(\psi_{k+1}) < J(\psi_k)$

(iii) Compute $\tilde{G}_{\psi_{k+1}}$

(iv) If $\tilde{G}_{\psi_{k+1}} = \psi_{k+1}$ then stop, else set $k \leftarrow k + 1$ and go to (ii)

Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[
\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]
Numerical Results

Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)\]

Design at iteration 1, \(J(u) = 0.1582\)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

subject to
\[
\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H_0^1(\Omega)
\]

Design at iteration 2, \(J(u) = 0.1473 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[
\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Design at iteration 3, \(J(u) = 0.1247 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min \mathcal{J}(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

subject to

\[
\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Design at iteration 4, \(\mathcal{J}(u) = 0.0993 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[
\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Design at iteration 5, \(J(u) = 0.0639 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min \mathcal{J}(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \(\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega) \)

Design at iteration 6, \(\mathcal{J}(u) = 0.0594 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

\[
s.t. \int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Design at iteration 7, \(J(u) = 0.0485\)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min \mathcal{J}(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega) \]

Design at iteration 8, \[\mathcal{J}(u) = 0.0431 \]
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

\[
\text{s.t. } \int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)
\]

Design at iteration 9, \(J(u) = 0.0384 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

\[
s.t. \int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H_0^1(\Omega)
\]

Design at iteration 10, \(J(u) = 0.0356 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[
\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H_0^1(\Omega)
\]

Design at iteration 20, $J(u) = 0.030541$
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \(\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega) \)

Design at iteration 30, \(J(u) = 0.030136 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

\[
\text{s.t. } \int_{\Omega} \nu(\|\nabla u\|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H_0^1(\Omega)
\]

Design at iteration 40, \(J(u) = 0.030030\)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[\int_{\Omega} \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)\]

Final Design at iteration 43, \(J(u) = 0.030027 \)
Goal: Filter out higher harmonics of radial component of magnetic flux density along air gap while keeping high first harmonic

\[
\min J(u(\Omega)) = \frac{THD(B_r(u(\Omega)))}{A_1(B_r(u(\Omega)))}
\]

s.t. \[\int_\Omega \nu(|\nabla u|) \nabla u \cdot \nabla \eta = \langle F, \eta \rangle \quad \forall \eta \in H^1_0(\Omega)\]

Final Design at iteration 43, \(J(u) = 0.030027\)
References

K. Sturm
Minimax Lagrangian Approach to the Differentiability of Nonlinear PDE-Constrained Shape Functions without Saddle Point Assumption,

P. G., A. Laurain, U. Langer, H. Meftahi, K. Sturm,
Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics,
Shape Optimization for Nonlinear Magnetostatics

Model Problem from 2D Magnetostatics

\[
\begin{align*}
\min_{\Omega_f \in \mathcal{O}} \quad & \mathcal{J}(u(\Omega_f)) \\
\text{s.t.} \quad & -\text{div} \left(\nu_{\Omega_f} (|\nabla u|) \nabla u \right) = F \quad \text{in } \Omega \\
& \quad u = 0 \quad \text{on } \partial\Omega
\end{align*}
\]

(4)

where

\[\mathcal{O} = \{ \Omega_f \subset \Omega_f^{\text{ref}}, \Omega_f \text{ open and Lipschitz with uniform constant } L_\mathcal{O} \}. \]
Model Problem from 2D Magnetostatics

\[
\begin{align*}
\min_{\Omega_f \in \mathcal{O}} \quad & \mathcal{J}(u(\Omega_f)) \\
\text{s.t.} \quad & \begin{cases}
-\text{div} \left(\nu_{\Omega_f} (|\nabla u|) \nabla u \right) = F & \text{in } \Omega \\
\quad u = 0 & \text{on } \partial\Omega
\end{cases}
\end{align*}
\]

(4)

where

\[
\mathcal{O} = \{ \Omega_f \subset \Omega_f^{\text{ref}}, \Omega_f \text{ open and Lipschitz with uniform constant } L_\mathcal{O} \}.
\]

Proposition [G., Langer, Laurain, Meftahi, Sturm, 2015]

There exists a solution \(\Omega_f \in \mathcal{O} \) to the shape optimization problem above.
Shape Optimization for Nonlinear Magnetostatics

Definition

Eulerian Semiderivative in direction $V \in C^{0,1}_{c}(\Omega, \mathbb{R}^{d})$

$$dJ(\Omega; V) := \lim_{t \to 0} \frac{J(\Omega_t) - J(\Omega)}{t}$$

If $V \mapsto dJ(\Omega; V)$ exists and is linear, then we call J **shape differentiable** and dJ the **shape derivative** of J
Definition

Eulerian Semiderivative in direction $V \in C^{0,1}_c(\Omega, \mathbb{R}^d)$

$$d\mathcal{J}(\Omega; V) := \lim_{t \to 0} \frac{\mathcal{J}(\Omega_t) - \mathcal{J}(\Omega)}{t}$$

If $V \mapsto d\mathcal{J}(\Omega; V)$ exists and is linear, then we call \mathcal{J} shape differentiable and $d\mathcal{J}$ the shape derivative of \mathcal{J}.
Shape Optimization for Nonlinear Magnetostatics

Definition

Eulerian Semiderivative in direction $V \in C_c^{0,1}(\Omega, \mathbb{R}^d)$

$$dJ(\Omega; V) := \lim_{t \to 0} \frac{J(\Omega_t) - J(\Omega)}{t}$$

If $V \mapsto dJ(\Omega; V)$ exists and is linear, then we call J **shape differentiable** and dJ the **shape derivative** of J
Shape Optimization for Nonlinear Magnetostatics

Definition

Eulerian Semiderivative in direction \(V \in C^{0,1}_c(\Omega, \mathbb{R}^d) \)

\[
dJ(\Omega; V) := \lim_{t \to 0} \frac{J(\Omega_t) - J(\Omega)}{t}
\]

If \(V \mapsto dJ(\Omega; V) \) exists and is linear, then we call \(J \) shape differentiable and \(dJ \) the shape derivative of \(J \).

Boundary expression (Hadamard-Zolésio)

\[
dJ(\Omega; V) = \int_{\partial\Omega_f} g V \cdot \mathbf{n} ds
\]

Domain expression

\[
dJ(\Omega; V) = \int_{\Omega} F(V, DV) dx
\]
Shape Optimization for Nonlinear Magnetostatics

Definition

Eulerian Semiderivative in direction \(V \in C^{0,1}_c(\Omega, \mathbb{R}^d) \)

\[
dJ(\Omega; V) := \lim_{t \to 0} \frac{J(\Omega_t) - J(\Omega)}{t}
\]

If \(V \mapsto dJ(\Omega; V) \) exists and is linear, then we call \(J \) shape differentiable and \(dJ \) the shape derivative of \(J \)

Boundary expression (Hadamard-Zolésio)

\[
dJ(\Omega; V) = \int_{\partial \Omega_f} g V \cdot n ds
\]

- \(V = -g n \) is descent direction

Domain expression

\[
dJ(\Omega; V) = \int_\Omega F(V, D\Omega) dx
\]

- descent direction \(V \) via auxiliary BVP
Shape Optimization for Nonlinear Magnetostatics

Definition

Eulerian Semiderivative in direction $V \in \mathcal{C}^{0,1}_c(\Omega, \mathbb{R}^d)$

$$d\mathcal{J}(\Omega; V) := \lim_{t \to 0} \frac{\mathcal{J}(\Omega_t) - \mathcal{J}(\Omega)}{t}$$

If $V \mapsto d\mathcal{J}(\Omega; V)$ exists and is linear, then we call \mathcal{J} shape differentiable and $d\mathcal{J}$ the shape derivative of \mathcal{J}.

Boundary expression (Hadamard-Zolésio)

$$d\mathcal{J}(\Omega; V) = \int_{\partial\Omega_f} g V \cdot n ds$$

- $V = -g n$ is descent direction
- Often needed in neighborhood of $\partial\Omega_f$

Domain expression

$$d\mathcal{J}(\Omega; V) = \int_{\Omega} F(V, DV) dx$$

- descent direction V via auxiliary BVP
- More general
- Better accuracy in FE Setting

Theorem [G., Langer, Laurain, Meftahi, Sturm, 2015]

Let \(\nu \) satisfy the natural assumptions. Then \(\mathcal{J} \) is shape differentiable and

\[
d\mathcal{J}(\Omega; V) = -\int_{\Omega_{mag}} \mathbb{P}'(0) \nabla p \cdot M^\perp \, dx + \int_{D} \nu(x, |\nabla u|) \mathbb{Q}'(0) \nabla u \cdot \nabla p \, dx
- \int_{D} \frac{\partial \zeta \nu(x, |\nabla u|)}{|\nabla u|} (\nabla u \cdot \nabla p) \nabla u \cdot \nabla p \, dx
\]

where \(\mathbb{P}'(0) = (\text{div} \, V) I_2 - DV^T \), \(\mathbb{Q}'(0) = (\text{div} \, V) I_2 - DV^T - DV \), \(I_2 \in \mathbb{R}^{2,2} \) is the identity matrix, and \(u, p \in H^1_0(D) \) are state and adjoint variable, respectively.
Theorem [G., Langer, Laurain, Meftahi, Sturm, 2015]

Let ν satisfy the natural assumptions. Then \mathcal{J} is shape differentiable and

$$d\mathcal{J}(\Omega; V) = -\int_{\Omega_{mag}} \mathbb{P}'(0) \nabla p \cdot M^\perp \, dx + \int_{D} \nu(x, |\nabla u|) \mathbb{Q}'(0) \nabla u \cdot \nabla p \, dx$$

$$- \int_{D} \frac{\partial \xi \nu(x, |\nabla u|)}{|\nabla u|} (DV^T \nabla u \cdot \nabla u) (\nabla u \cdot \nabla p) \, dx$$

where $\mathbb{P}'(0) = (\text{div } V) I_2 - DV^T$, $\mathbb{Q}'(0) = (\text{div } V) I_2 - DV^T - DV$, $I_2 \in \mathbb{R}^{2 \times 2}$ is the identity matrix, and $u, p \in H^1_0(D)$ are state and adjoint variable, respectively.

- Want to find V such that $d\mathcal{J}(\Omega; V) < 0$.

P. Gangl (JKU Linz, LCM)
Theorem [G., Langer, Laurain, Meftahi, Sturm, 2015]

Let ν satisfy the natural assumptions. Then J is shape differentiable and

$$
\begin{align*}
\frac{dJ(\Omega; V)}{d\Omega} &= -\int_{\Omega_{\text{mag}}} \mathbb{P}'(0) \nabla p \cdot M^\perp \, dx + \int_D \nu(x, |\nabla u|) \mathbb{Q}'(0) \nabla u \cdot \nabla p \, dx \\
&\quad - \int_D \frac{\partial \zeta \nu(x, |\nabla u|)}{|\nabla u|} \left(DV^T \nabla u \cdot \nabla u \right)(\nabla u \cdot \nabla p) \, dx
\end{align*}
$$

where $\mathbb{P}'(0) = (\text{div } V) I_2 - DV^T$, $\mathbb{Q}'(0) = (\text{div } V) I_2 - DV^T - DV$, $I_2 \in \mathbb{R}^{2 \times 2}$ is the identity matrix, and $u, p \in H^1_0(D)$ are state and adjoint variable, respectively.

- Want to find V such that $\frac{dJ(\Omega; V)}{d\Omega} < 0$.
- Trick to obtain a descent direction V:

 Choose symm. pos. def. bilinear form $b : H^1_0(D) \times H^1_0(D) \to \mathbb{R}$ and solve

$$(b(V, W) = -\frac{dJ(\Omega; W)}{d\Omega} \quad \forall W \in H^1_0(D))$$
Theorem [G., Langer, Laurain, Meftahi, Sturm, 2015]

Let \(\nu \) satisfy the natural assumptions. Then \(J \) is shape differentiable and

\[
\begin{align*}
 dJ(\Omega; V) &= -\int_{\Omega_{mag}} \mathbb{P}'(0) \nabla p \cdot M^\perp \, dx + \int_D \nu(x, |\nabla u|) Q'(0) \nabla u \cdot \nabla p \, dx \\
 &\quad - \int_D \frac{\partial \zeta \nu(x, |\nabla u|)}{|\nabla u|} (DV^T \nabla u \cdot \nabla u)(\nabla u \cdot \nabla p) \, dx
\end{align*}
\]

where \(\mathbb{P}'(0) = (\text{div} V) I_2 - DV^T \), \(Q'(0) = (\text{div} V) I_2 - DV^T - DV \), \(I_2 \in \mathbb{R}^{2 \times 2} \) is the identity matrix, and \(u, p \in H^1_0(D) \) are state and adjoint variable, respectively.

- Want to find \(V \) such that \(dJ(\Omega; V) < 0 \).
- Trick to obtain a descent direction \(V \):

 Choose symm., pos. def. bilinear form \(b : H^1_0(D) \times H^1_0(D) \rightarrow \mathbb{R} \) and solve

 \[
 b(V, W) = -dJ(\Omega; W) \quad \forall \ W \in H^1_0(D)
 \]

 \[\implies dJ(\Omega; V) = -b(V, V) < 0 \]
Theorem [G., Langer, Laurain, Meftahi, Sturm, 2015]

Let ν satisfy the natural assumptions. Then \mathcal{J} is shape differentiable and

$$d\mathcal{J}(\Omega; V) = -\int_{\Omega_{\text{mag}}} \mathbb{P}'(0) \nabla p \cdot M^\perp \; dx + \int_D \nu(x, |\nabla u|) \mathcal{Q}'(0) \nabla u \cdot \nabla p \; dx$$

$$- \int_D \frac{\partial \zeta}{|\nabla u|} (DV^T \nabla u \cdot \nabla u) (\nabla u \cdot \nabla p) \; dx$$

where $\mathbb{P}'(0) = (\text{div} V) I_2 - DV^T$, $\mathcal{Q}'(0) = (\text{div} V) I_2 - DV^T - DV$, $I_2 \in \mathbb{R}^{2 \times 2}$ is the identity matrix, and $u, p \in H^1_0(D)$ are state and adjoint variable, respectively.

- Want to find V such that $d\mathcal{J}(\Omega; V) < 0$.
- Trick to obtain a descent direction V:

 Choose symm., pos. def. bilinear form $b : H^1_0(D) \times H^1_0(D) \to \mathbb{R}$ and solve

 $$b(V, W) = -d\mathcal{J}(\Omega; W) \quad \forall W \in H^1_0(D)$$

 $$\implies d\mathcal{J}(\Omega; V) = -b(V, V) < 0$$

 $$\implies \mathcal{J}(\Omega_t) < \mathcal{J}(\Omega) \text{ for small } t$$
iter=0, $\mathcal{J}(u) = 1.684 \times 10^{-3}$
Shape Optimization

Numerical Results

\[\text{iter}=0, \ J(u) = 1.684 \times 10^{-3} \]
Numerical Results

$$\text{iter} = 15, \mathcal{J}(u) = 1.431 \times 10^{-3}$$
Shape Optimization

Numerical Results

iter=15, $\mathcal{J}(u) = 1.431 \times 10^{-3}$
iter=30, $\mathcal{J}(u) = 1.169 \times 10^{-3}$
Numerical Results

\[\text{iter}=30, \quad J(u) = 1.169 \times 10^{-3} \]
Shape Optimization

Numerical Results

iter=45, $J(u) = 1.043 \times 10^{-3}$
Shape Optimization

Numerical Results

\begin{align*}
\text{iter}=45, \quad J(u) & = 1.043 \times 10^{-3} \\
\end{align*}
Numerical Results

\[\text{iter}=60, \mathcal{J}(u) = 0.992 \times 10^{-3} \]
iter=60, $\mathcal{J}(u) = 0.992 \, \text{e-3}$
Shape Optimization

Numerical Results

\[\text{iter}=70, \ J(u) = 0.985 \times 10^{-3} \]
Numerical Results

\[\text{iter}=70, \mathcal{J}(u) = 0.985 \times 10^{-3} \]
Numerical Results

Question: How to resolve interface?
Outline

1. Motivation and Problem Description

2. Topology Optimization

3. Shape Optimization

4. A Locally Modified Finite Element Method
 - The Method
 - Numerical Example

5. Application to Electric Motor

6. Conclusion & Outlook
Outline

1 Motivation and Problem Description
2 Topology Optimization
3 Shape Optimization
4 A Locally Modified Finite Element Method
 ■ The Method
 ■ Numerical Example
5 Application to Electric Motor
6 Conclusion & Outlook
Problem: Evolving interface is not aligned with mesh!
FEM for Interface Problem

Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid
Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid

Drawbacks:
- Jagged interface
- $\|\nabla (u - u_h)\|_{L^2(\Omega)} = O(h^{1/2})$

Loss of accuracy
FEM for Interface Problem

Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid

Drawbacks:

- Jagged interface
- $\|\nabla(u - u_h)\|_{L^2(\Omega)} = O(h^{1/2})$

Possible remedies:
FEM for Interface Problem

Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid

Drawbacks:
- Jagged interface
- $\|\nabla (u - u_h)\|_{L^2(\Omega)} = O(h^{1/2})$
 Loss of accuracy

Possible remedies:
- Remeshing
 - Expensive
Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid

Drawbacks:
- Jagged interface
- $\| \nabla (u - u_h) \|_{L^2(\Omega)} = O(h^{1/2})$
 Loss of accuracy

Possible remedies:
- Remeshing
 - Expensive
- Move mesh points along descent vector field
 - No Topology Changes possible
FEM for Interface Problem

Problem: Evolving interface is not aligned with mesh!

Naive approach: Assign element to Ω_1 or Ω_2 based on position of centroid

Drawbacks:
- Jagged interface
- $\|\nabla (u - u_h)\|_{L^2(\Omega)} = O(h^{1/2})$
 Loss of accuracy

Possible remedies:
- Remeshing
 - Expensive
- Move mesh points along descent vector field
 - No Topology Changes possible
- Existing methods: XFEM, unfitted Nitsche method, ...
 - Variable connectivity of system matrix
 - Variable number of unknowns
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately
Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh

\[
P_4 = P_1 + s(P_2 - P_1) \\
P_6 = P_1 + r(P_3 - P_1)
\]
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh

\[P_4 = P_1 + s(P_2 - P_1) \]
\[P_6 = P_1 + r(P_3 - P_1) \]
A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh

Choose P_4, P_5, P_6 such that
- interface is resolved accurately

\[
\begin{align*}
P_4 &= P_1 + s(P_2 - P_1) \\
P_6 &= P_1 + r(P_3 - P_1)
\end{align*}
\]
A Locally Modified FEM

The Method

A Locally Modified Finite Element Method for Interface Problems

Idea: Local Modification of FE Mesh such that interface is resolved accurately

Based on approach for quadrilateral mesh:

Requirement: Hierarchical structure of mesh

Choose P_4, P_5, P_6 such that

- interface is resolved accurately
- all interior angles are bounded away from 180°

\[
P_4 = P_1 + s(P_2 - P_1) \\
P_6 = P_1 + r(P_3 - P_1)
\]
A Locally Modified Finite Element Method for Interface Problems

4 different configurations:

- **Configuration A**: $r, s < 1/2$

\[P_4 = (1 - s)P_1 + sP_2 \]
\[P_5 = \frac{1}{2} (P_2 + P_3) \]
\[P_6 = (1 - r)P_1 + rP_3 \]
A Locally Modified Finite Element Method for Interface Problems

4 different configurations:

- Configuration A: \(r, s < 1/2 \)
- Configuration B: \(r, s > 1/2 \)

\[
P_4 = (1 - s)P_1 + sP_2 \\
P_5 = (1 - s)P_3 + sP_2 \\
P_6 = (1 - r)P_1 + rP_3
\]
A Locally Modified Finite Element Method for Interface Problems

4 different configurations:

- Configuration A: $r, s < 1/2$
- Configuration B: $r, s > 1/2$
- Configuration C: $r > 1/2, s < 1/2$ (or vice versa)

\[P_4 = (1 - s)P_1 + sP_2 \]
\[P_5 = \frac{1}{2}(P_2 + P_3) \]
\[P_6 = (1 - r)P_1 + rP_3 \]
A Locally Modified Finite Element Method for Interface Problems

4 different configurations:

- Configuration A: \(r, s < 1/2 \)
- Configuration B: \(r, s > 1/2 \)
- Configuration C: \(r > 1/2, s < 1/2 \) (or vice versa)
- Configuration D: \(r \in (0, 1/2), s = 1 \)

\[
P_4 = (1 - r)P_1 + rP_2
\]
\[
P_5 = \frac{1}{2}(P_2 + P_3)
\]
\[
P_6 = (1 - r)P_1 + rP_3
\]
A Locally Modified Finite Element Method for Interface Problems

Lemma (G., 2016)

All interior angles in configurations A, B, C, D are bounded by $180^\circ - \delta/2$ independent of r, s, where δ is the minimal angle in the makro mesh.
A Locally Modified FEM

The Method

Configuration A: \(r < 1/2, \ s < 1/2 \)

Configuration B: \(r > 1/2, \ s > 1/2 \)

Configuration C: \(r < 1/2, \ s > 1/2 \)

Configuration D: \(0 < r < 1, \ s = 1 \)
A Locally Modified Finite Element Method for Interface Problems

Configuration A Configuration B Configuration C Configuration D

Lemma (G., 2016)

All interior angles in configurations A, B, C, D are bounded by $180^\circ - \delta/2$ independent of r, s, where δ is the minimal angle in the makro mesh.
A Locally Modified Finite Element Method for Interface Problems

Configuration A
Configuration B
Configuration C
Configuration D

Lemma (G., 2016)

All interior angles in configurations A, B, C, D are bounded by $180^\circ - \delta/2$ independent of r, s, where δ is the minimal angle in the makro mesh.

Theorem (Frei & Richter 2014)

Let $\Omega \subset \mathbb{R}^2$ be a domain with convex polygonal boundary, split into $\Omega = \Omega_1 \cup \Gamma \cup \Omega_2$, where Γ is a smooth interface with C^2-parametrization. We assume that Γ divides Ω in such a way that the solution $u \in H^1_0(\Omega)$ satisfies the stability estimate

$$u \in H^1_0(\Omega) \cap H^2(\Omega_1 \cup \Omega_2), \quad \|u\|_{H^2(\Omega_1 \cup \Omega_2)} \leq c_s \|f\|.$$

For the corresponding modified finite element solution $u_h \in V_h$ it holds that

$$\|\nabla (u - u_h)\|_{L^2(\Omega)} \leq C h \|f\|, \quad \|u - u_h\|_{L^2(\Omega)} \leq C h^2 \|f\|.$$
Outline

1 Motivation and Problem Description

2 Topology Optimization

3 Shape Optimization

4 A Locally Modified Finite Element Method
 - The Method
 - Numerical Example

5 Application to Electric Motor

6 Conclusion & Outlook
Numerical Example

Let $\Omega = \Omega_1 \cup \Gamma_I \cup \Omega_2 \subset \mathbb{R}^2$ with the interface $\Gamma_I = \overline{\Omega}_1 \cap \overline{\Omega}_2$.

$$-\nabla \cdot (\kappa_1 \nabla u) = f \text{ in } \Omega_1$$

$$-\nabla \cdot (\kappa_2 \nabla u) = f \text{ in } \Omega_2$$

$$\left[u \right] = 0 \text{ on } \Gamma_I$$

$$\left[\kappa \partial_n u \right] = 0 \text{ on } \Gamma_I$$

$$u = g_D \text{ on } \partial \Omega$$

Let $\Omega_1 = B_R(x_m)$ and $\Omega_2 = \Omega \setminus \overline{\Omega}_1$ and choose f and g_D such that

$$u(x) = \begin{cases} -4\kappa_1\kappa_2^2 R^2 \| x - x_m \|^2 + 2R^4 \kappa_2 (2\kappa_2 \kappa_1 - 1) & x \in \Omega_1 \\ -2\kappa_2 \| x - x_m \|^4 & x \in \Omega_2. \end{cases}$$
Numerical Example

k without Interface Technique

k with Interface Technique

Convergence without interface treatment

<table>
<thead>
<tr>
<th>nVerts</th>
<th>h</th>
<th>$|u - u_h|_{L^2}$</th>
<th>rate L_2</th>
<th>$|\nabla(u - u_h)|_{L^2}$</th>
<th>rate H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
<td>h_0</td>
<td>0.00713817</td>
<td>–</td>
<td>0.175983</td>
<td>–</td>
</tr>
<tr>
<td>1089</td>
<td>$h_0/2$</td>
<td>0.00182557</td>
<td>1.9672</td>
<td>0.0884579</td>
<td>0.9924</td>
</tr>
<tr>
<td>4225</td>
<td>$h_0/4$</td>
<td>0.00049816</td>
<td>1.8737</td>
<td>0.0444916</td>
<td>0.9915</td>
</tr>
<tr>
<td>16641</td>
<td>$h_0/8$</td>
<td>0.000152727</td>
<td>1.7057</td>
<td>0.0225293</td>
<td>0.9817</td>
</tr>
<tr>
<td>66049</td>
<td>$h_0/16$</td>
<td>0.0000586341</td>
<td>1.3811</td>
<td>0.011521</td>
<td>0.9675</td>
</tr>
<tr>
<td>263169</td>
<td>$h_0/32$</td>
<td>0.0000280373</td>
<td>1.0644</td>
<td>0.00600087</td>
<td>0.9410</td>
</tr>
</tbody>
</table>
Numerical Example

κ without Interface Technique

κ with Interface Technique

<table>
<thead>
<tr>
<th>nVerts</th>
<th>h</th>
<th>$|u - u_h|_{L^2}$</th>
<th>rate L_2</th>
<th>$|\nabla (u - u_h)|_{L^2}$</th>
<th>rate H_1</th>
<th>angMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
<td>h_0</td>
<td>0.00724623</td>
<td>–</td>
<td>0.175665</td>
<td>–</td>
<td>140.334</td>
</tr>
<tr>
<td>1089</td>
<td>$h_0/2$</td>
<td>0.00180955</td>
<td>2.0016</td>
<td>0.087845</td>
<td>0.9998</td>
<td>138.116</td>
</tr>
<tr>
<td>4225</td>
<td>$h_0/4$</td>
<td>0.000453133</td>
<td>1.9976</td>
<td>0.0439104</td>
<td>1.0004</td>
<td>143.084</td>
</tr>
<tr>
<td>16641</td>
<td>$h_0/8$</td>
<td>0.000113451</td>
<td>1.9979</td>
<td>0.0219536</td>
<td>1.0001</td>
<td>152.223</td>
</tr>
<tr>
<td>66049</td>
<td>$h_0/16$</td>
<td>0.0000283643</td>
<td>1.9999</td>
<td>0.0109756</td>
<td>1.0002</td>
<td>149.11</td>
</tr>
<tr>
<td>263169</td>
<td>$h_0/32$</td>
<td>0.00000709548</td>
<td>1.9991</td>
<td>0.00548762</td>
<td>1.0001</td>
<td>155.643</td>
</tr>
</tbody>
</table>
Condition of the Problem

angle of interface: 30 deg
Condition of the Problem

angle of interface: 15 deg
Condition of the Problem

angle of interface: 7.5 deg
Condition of the Problem

angle of interface: 3.75 deg
Condition of the Problem

angle of interface: 1.875 deg
Condition of the Problem

angle of interface: 0.9375 deg
Condition of the Problem

angle of interface: 0.46875 deg
Condition of the Problem

angle of interface: 0.23438 deg
Condition of the Problem

angle of interface: 0.11719 deg
Condition of the Problem

angle of interface: 0.058594 deg
Condition of the Problem

angle of interface: 0.029297 deg
Condition of the Problem

No Scaling

<table>
<thead>
<tr>
<th>nVerts</th>
<th>h</th>
<th>max angle</th>
<th>min angle</th>
<th>angle IF</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>334</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>132.44</td>
<td>1.5415</td>
<td>15</td>
<td>503</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>139.70</td>
<td>0.7391</td>
<td>7.5</td>
<td>483</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>133.17</td>
<td>1.2421</td>
<td>3.75</td>
<td>562</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>146.54</td>
<td>0.090764</td>
<td>1.875</td>
<td>872</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>118.07</td>
<td>0.9375</td>
<td>0.9375</td>
<td>334</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.05</td>
<td>0.46875</td>
<td>0.46875</td>
<td>372</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.53</td>
<td>0.23437</td>
<td>0.23438</td>
<td>452</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.77</td>
<td>0.11719</td>
<td>0.11719</td>
<td>578</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.88</td>
<td>0.058594</td>
<td>0.058594</td>
<td>743</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.94</td>
<td>0.029297</td>
<td>0.029297</td>
<td>979</td>
</tr>
</tbody>
</table>

Jacobi Preconditioned

<table>
<thead>
<tr>
<th>nVerts</th>
<th>h</th>
<th>max angle</th>
<th>min angle</th>
<th>angle IF</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>144</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>132.44</td>
<td>1.5415</td>
<td>15</td>
<td>167</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>139.70</td>
<td>0.7391</td>
<td>7.5</td>
<td>173</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>133.17</td>
<td>1.2421</td>
<td>3.75</td>
<td>163</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>146.54</td>
<td>0.090764</td>
<td>1.875</td>
<td>177</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>118.07</td>
<td>0.9375</td>
<td>0.9375</td>
<td>130</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.05</td>
<td>0.46875</td>
<td>0.46875</td>
<td>128</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.53</td>
<td>0.23437</td>
<td>0.23438</td>
<td>126</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.76</td>
<td>0.11719</td>
<td>0.11719</td>
<td>125</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.88</td>
<td>0.058594</td>
<td>0.058594</td>
<td>122</td>
</tr>
<tr>
<td>2145</td>
<td>0.015625</td>
<td>119.94</td>
<td>0.029297</td>
<td>0.029297</td>
<td>120</td>
</tr>
</tbody>
</table>
Outline

1 Motivation and Problem Description
2 Topology Optimization
3 Shape Optimization
4 A Locally Modified Finite Element Method
5 Application to Electric Motor
6 Conclusion & Outlook
Numerical Example

Synchronous Reluctance Motor

- No magnets
- Find optimal shape/topology of rotor
- Maximize torque

Source: www.quintecgmbh.com
Source: www.elektrotechnik.vogel.de
Numerical Example

Synchronous Reluctance Motor

\[
\max \mathcal{J}(u) = \int_{\Gamma_0} \nabla u^T Q(x) \nabla u \, ds
\]

\[\text{s.t. } \left\{ \begin{array}{l}
-\text{div} (\nu_{\Omega_f} (|\nabla u|) \nabla u) = F \quad \text{in } \Omega \\
u = 0 \quad \text{on } \partial \Omega
\end{array} \right.\]

Source: www.quintecgmbh.com

Source: www.elektrotechnik.vogel.de
Numerical Example

Synchronous Reluctance Motor

\[
\max \mathcal{J}(u) = \int_{\Gamma_0} \nabla u^T Q(x) \nabla u \, ds
\]

s.t.
\[
\begin{aligned}
- \text{div} \left(\nu_{\Omega_f} (|\nabla u|) \nabla u \right) &= F \quad \text{in } \Omega \\
\nabla u &= 0 \quad \text{on } \partial \Omega
\end{aligned}
\]
Optimization Pipeline

1. Topology Optimization
 - Level set algorithm based on topological derivative
 - Resolve interface

2. Shape Optimization
 - Level set algorithm to allow for topology changes
 - Resolve interface
Optimization Pipeline

1. Topology Optimization
 - Level set algorithm based on topological derivative
 - Resolve interface

2. Shape Optimization
 - Level set algorithm to allow for topology changes
 - Resolve interface
Stage I: Topology Optimization

\[\text{iter} = 0, \mathcal{J}(u) = 0.053 \]
Stage I: Topology Optimization

iter = 1, $J(u) = 1.198$
Stage I: Topology Optimization

iter = 2, $\mathcal{J}(u) = 6.024$
Stage I: Topology Optimization

iter = 3, $\mathcal{J}(u) = 11.143$
Stage I: Topology Optimization

iter = 4, $\mathcal{J}(u) = 11.877$
Stage I: Topology Optimization

\[\text{iter} = 5, \quad J(u) = 12.036 \]
Stage I: Topology Optimization

iter = 6, $\mathcal{J}(u) = 12.858$
Stage I: Topology Optimization

iter = 7, $\mathcal{J}(u) = 13.162$
Stage I: Topology Optimization

\[\text{iter} = 8, \ J(u) = 13.449 \]
Stage I: Topology Optimization

iter = 9, $J(u) = 13.717$
Stage I: Topology Optimization

iter = 10, $\mathcal{J}(u) = 13.833$
Stage I: Topology Optimization

iter = 11, $\mathcal{J}(u) = 13.973$
Stage I: Topology Optimization

iter = 12, $\mathcal{J}(u) = 14.157$
Stage I: Topology Optimization

iter = 13, $\mathcal{J}(u) = 14.205$
Stage I: Topology Optimization

iter = 14, $J(u) = 14.579$
Stage I: Topology Optimization

iter = 15, $\mathcal{J}(u) = 14.833$
Stage I: Topology Optimization

\[\text{iter} = 25, \ J(u) = 15.325 \]
Stage I: Topology Optimization

iter = 35, $J(u) = 15.659$
Stage I: Topology Optimization

\[\text{iter} = 45, \quad \mathcal{J}(u) = 15.744 \]
Stage I: Topology Optimization

iter = 55, $\mathcal{J}(u) = 15.798$
Optimization Pipeline

1. **Topology Optimization**
 - Level set algorithm based on topological derivative
 - Resolve interface

2. **Shape Optimization**
 - Level set algorithm to allow for topology changes
 - Resolve interface
Optimization Pipeline

1. Topology Optimization
 - Level set algorithm based on topological derivative
 - Resolve interface

2. Shape Optimization
 - Level set algorithm to allow for topology changes
 - Resolve interface
Stage II: Shape Optimization

\[\text{iter} = 0, \ J(u) = 15.800 \]
Stage II: Shape Optimization

\[\text{iter} = 1, \ J(u) = 15.931 \]
Stage II: Shape Optimization

iter = 2, $\mathcal{J}(u) = 16.107$
Stage II: Shape Optimization

\[\text{iter} = 3, \ J(u) = 16.127 \]
Outline

1. Motivation and Problem Description
2. Topology Optimization
3. Shape Optimization
4. A Locally Modified Finite Element Method
5. Application to Electric Motor
6. Conclusion & Outlook
Conclusion

- Derivation of Topological Derivative
- Derivation of Shape Derivative
- Modified FE Method for accurately resolving interfaces
- Combination of Topology and Shape Optimization

Outlook:

- Application to rotating machines
- 3-dimensional model: $H^1(\Omega) \rightsquigarrow H(\text{curl}; \Omega)$
- Couple with Isogeometric Analysis in 2D and 3D
- Eddy current problems for starting phase of motor: Space-Time Methods?
Conclusion

- Derivation of Topological Derivative
- Derivation of Shape Derivative
- Modified FE Method for accurately resolving interfaces
- Combination of Topology and Shape Optimization

Outlook:

- Application to rotating machines
- 3-dimensional model: \(H^1(\Omega) \hookrightarrow H(\mathbf{curl}; \Omega) \)
- Couple with Isogeometric Analysis in 2D and 3D
- Eddy current problems for starting phase of motor: Space-Time Methods?

Thank you for your attention!