Fast Algorithms for Estimating Optical Absorption Spectrum

Chao Yang
Computational Research Division
Lawrence Berkeley National Laboratory

Joint work with R. van Beeumen, J. Brabec (Czech Academy of Sciences), L. Lin (UC-Berkeley), M. Shao, E. Vencharynski (LSTC), N. Govind (PNNL), Y. Saad (Minnesota) and E. Ng
Outline

• Absorption spectrum estimation via linear response time-dependent density functional theory (LR-TDDFT)
• Model order reduction techniques for approximating absorption spectrum
• Solving linear response eigenvalue problems
• Computational examples
Excited States of Molecules and Optical Absorption Spectroscopy
Application

Quantum Many-body Problem

- \(H\Psi(r_1, r_2, \ldots, r_{n_e}) = \Psi(r_1, r_2, \ldots, r_{n_e})E \)
 \[
 H = -\sum_{i}^{n_e} \nabla_i^2 + \sum_{i}^{n_e} v_n(r_i) + \frac{1}{2}\sum_{i\neq j} \frac{1}{|r_i - r_j|} \]
- Ground state \(E_0 \) vs excited states \(E_1, E_2 \ldots \)
- \(|\Psi_j|^2 \) gives the probability density of find electron \(i \) at \(r_i \)
- Electron density \(\rho(r_1) = \int dr_2 \cdots dr_{n_e} |\Psi(r_1, r_2, \ldots, r_{n_e})|^2 \) (contains all information such as chemical bonding, energy etc.)
- Excitation energy \(E_1 - E_0, E_2 - E_1, \ldots \)

Computationally challenging!
Density Functional Theory (DFT)
(turn many-body into single-particle)

- Ground-state observable as a functional of $\rho(r), r \in \mathbb{R}^3$ (Hohenberg-Kohn Theorem)
- The independent particle picture (interaction through a mean-contributed by all electrons)
- Kohn-Sham DFT at ground state
 \[H\psi_j(r) = \varepsilon_j \psi_j(r) \]
 \[H(\rho) = H_0 + V_{Hxc}(\rho), \rho = \sum_{j=1}^{n_e} |\psi_j|^2 \]
- Estimate excitation energy from occupied ε_j and unoccupied ε_α:
 \[\Delta\varepsilon_{ja} = \varepsilon_\alpha - \varepsilon_j \]
Time-dependent DFT

- Observables determined by time-dependent charge density $\rho(r, t)$ (Runge-Gross Theorem)

- $H(t)\psi_i(r, t) = i \frac{\partial}{\partial t} \psi_i(r, t)$, where $H = H_0 + V_{Hxc}(\rho(r, t))$, $\rho(r, t) = \sum_{j=1}^{ne} |\psi_i(r, t)|^2$

- $\psi_i(r, 0) = \psi_i^{KS}(r)$, $\rho(r, 0) = \rho^{KS}(r)$

- Excite the system with an electric field $E(r, t) = -k_0 x \delta(t)$ (instantaneous Hamiltonian perturbation)

- Absorption spectrum: measure the change in ρ or dynamical polarizability in frequency domain

$$\alpha_x(\omega) = -\int dr \ x \Delta \rho(r, \omega), \hspace{1cm} \Delta \rho(r, t) = \rho(r, t) - \rho^{KS}(r)$$

Must use small time steps
Linear Response TDDFT

- Hamiltonian perturbation
 \[H(t) = H_{KS} + \delta \nu_{ext}(t) \]
- Charge density perturbative series (in orders of \(\delta \nu_{ext}(t) \))
 \[\rho(r, t) = \rho_{KS}(r) + \Delta \rho^{(1)}(r, t) + \Delta \rho^{(2)}(r, t) + \cdots \]
- Linear response
 \[\Delta \rho^{(1)}(r, \omega) = \chi(\omega) \delta \nu_{ext}(\omega) \]
- Resonance at the poles of the polarizability \(\chi(\omega) \)
 \[\chi(r, r'; \omega) = \sum_j \frac{s_j(r)s_j(r')}{\omega - \lambda_j + i\eta} \]
- Spectral function and dynamic polarizability
 \[\lim_{\eta \to 0^+} -\text{Im} \chi = \sum_j s_j(r)s_j(r')\delta(\omega - \lambda_j) \quad \alpha_{xx}(\omega) = -\langle x | \text{Im} \chi | x \rangle \]
Linear perturbation for linear problem

• H is perturbed by an external potential $\Delta \nu$
 \[H \rightarrow H + \Delta \nu \]

• Its eigenvalues and eigenfunctions will change also, i.e.
 \[\psi_j \rightarrow \psi_j + \Delta \psi_j, \ \varepsilon_j \rightarrow \varepsilon_j + \Delta \varepsilon_j \]

• Change in $\rho = \sum_j |\psi_j|^2$, $\rho \rightarrow \rho + \Delta \rho$

• In general, linear perturbation analysis yields

$$\chi_0 = \sum_{j,a} \frac{\psi_j(r)\psi_a(r)\psi_j(r')\psi_a(r')}{\omega - (\varepsilon_j - \varepsilon_a) + i\eta} - \sum_{j,a} \frac{\psi_a(r)\psi_j(r)\psi_a(r')\psi_j(r')}{\omega + (\varepsilon_j - \varepsilon_a) + i\eta}$$

$$\Delta \rho = \chi_0 \Delta \nu,$$
Self-consistent perturbation

• When the Hamiltonian of the TDDFT Hamiltonian is perturbed by δv_{ext} at $t=0$
• The changes in the wavefunction and charge density ρ must be *self-consistent*
• The cumulative change in Hamiltonian

$$\Delta v = \delta v_{\text{ext}} + \Delta v_{Hxc}(\Delta \rho), \Delta v_{Hxc} = \int \frac{1}{|r-r'|} \Delta \rho(r') dr' + \int \frac{\delta v_{xc}}{\delta \rho} \Delta \rho(r') dr'$$

$$\Delta \rho = \chi_0 \Delta v$$
From χ_0 to χ

- Find χ such that $\Delta \rho \approx \chi \delta v_{\text{ext}}$
- Start from $\Delta \rho = \chi_0 \Delta v = \chi_0 (\delta v_{\text{ext}} + f_{\text{Hxc}} \Delta \rho)$, where $f_{\text{Hxc}} \equiv \frac{1}{|r-r'|} + \frac{\delta v_{\text{xc}}(\rho(r))}{\delta \rho(r')}$
- Rearrange terms
 \[(I - \chi_0 f_{\text{Hxc}}) \Delta \rho = \chi_0 \delta v_{\text{ext}}\]
- Therefore
 \[\chi(\omega) = (I - \chi_0(\omega) f_{\text{Hxc}})^{-1} \chi_0(\omega)\]
- We are interested in the poles of χ
Simplification

\[\chi_0 = \sum \frac{\psi_j(r)\psi_a(r)\psi_j(r')\psi_a(r')}{\omega-(\varepsilon_j-\varepsilon_a)+i\eta} - \sum \frac{\psi_a(r)\psi_j(r)\psi_a(r')\psi_j(r')}{\omega+(\varepsilon_j-\varepsilon_a)+i\eta} \]

- Define \(\Phi(r) = \{\psi_j(r)\psi_a(r) \ldots\} \), \(\hat{\Phi}(r) = \{\Phi(r) \Phi(r)\} \)

and \(D(\omega) = \begin{bmatrix} (\omega + i\eta)I - D_0 & 0 \\ 0 & -(\omega + i\eta)I - D_0 \end{bmatrix} \) with \(D_0 = \text{diag}\{\varepsilon_j - \varepsilon_a, \ldots\} \),

- Rewrite \(\chi_0 \) as \(\chi_0 = \hat{\Phi}D(\omega)^{-1}\hat{\Phi}^T \), where
Sherman-Morrison-Woodbury

- $\chi = (I - \chi_0 f_{Hxc})^{-1} \chi_0, \quad \chi_0 = \hat{\Phi} D(\omega)^{-1} \hat{\Phi}^T$
- $\chi = \left[I + \hat{\Phi} (D - \hat{\Phi}^T f_{Hxc} \hat{\Phi})^{-1} \hat{\Phi}^T f_{Hxc} \right] \hat{\Phi} D^{-1} \hat{\Phi}^T$
- Define
 $$H = \begin{pmatrix} D_0 + \Phi^T f_{Hxc} \Phi & \Phi^T f_{Hxc} \Phi \\ \Phi^T f_{Hxc} \Phi & D_0 + \Phi^T f_{Hxc} \Phi \end{pmatrix}$$
- If follows that
 $$\chi(\omega) = \hat{\Phi} \left[(\omega + i\eta)S - H \right]^{-1} \hat{\Phi}^T,$$
 where
 $$S = \begin{pmatrix} I & \\ -I & \end{pmatrix}$$
Casida Eigenvalue Problem

- The poles of $\chi(\omega) = \hat{\Phi}[(\omega + i\eta)S - H]^{-1} \hat{\Phi}^T$ are at the eigenvalues of the Casida Hamiltonian

$$H = \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad S = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \quad \text{where}$$

$$A = D_0 + \Phi^T f_{Hxc} \Phi, \quad B = \Phi^T f_{Hxc} \Phi,$$

$$D_0 = \text{diag}\{\varepsilon_j - \varepsilon_a, \cdots\}$$
Absorption spectrum

- Dynamic polarizability $\alpha(\tilde{\omega})$, $\tilde{\omega} = \omega + i\eta$

 $\alpha(\tilde{\omega}) \equiv d^T G^{-1}(\tilde{\omega}) d$

 $$d = \begin{pmatrix} d_x & d_y & d_z \\ d_x & d_y & d_z \end{pmatrix}, \quad G(\tilde{\omega}) = H - \tilde{\omega} S,$$

 $$H = \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad S = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \quad A = A^T, B = B^T$$

 $A, B \in \mathbb{R}^n$, $n \propto \text{(number of atoms)}^2$

- Absorption spectrum

 $\sigma(\omega) \propto -\text{Im}(\text{Tr}[\alpha(\tilde{\omega})])$
Computing $\sigma(\omega)$ via Diagonalization

- Eigendecomposition of $S^{-1}H = \begin{pmatrix} A & B \\ -B & -A \end{pmatrix} = \begin{pmatrix} U & V \\ V & U \end{pmatrix} \begin{pmatrix} \Lambda & \\ & -\Lambda \end{pmatrix} \begin{pmatrix} U & -V \\ -V & U \end{pmatrix}^T$

- $\sigma(\omega) = -\text{Im} \sum_{j=1}^{n} f_i^2 \left[\frac{1}{\omega-\lambda_j+i\eta} - \frac{1}{\omega+\lambda_j+i\eta} \right]$

where $f_i = d^T(u_i + \nu_i)$

- $\lim_{\eta \to 0^+} \sigma(\omega) = \sum_{j=1}^{n} f_j^2 \left[\delta(\omega - \lambda_j) + \delta(\omega + \lambda_j) \right]$
Approximating $\sigma(\omega)$ directly

- Choose a set of frequency samples ω_1, ω_2, ..., ω_k, and evaluate $\alpha(\tilde{\omega}_i) \equiv d^T G^{-1}(\tilde{\omega}_i) d$,
 $\tilde{\omega}_i = \omega_i + i\eta$
 by solving a number of linear systems
- May require many samples to resolve different peaks
Model Order Reduction (MOR)

- Construct a reduced order model from a subspace spanned by V:

$$
\hat{\sigma}(\omega) = -\text{Im} \left(\text{Tr} \left[\hat{d}^T \hat{G}^{-1}(\hat{\omega}) \hat{d} \right] \right), \quad \text{where}
\hat{d} = V^T d, \quad \hat{G} = V^T HV - \hat{\omega} V^T SV
$$

- Diagonalize the projected pencil (\hat{H}, \hat{S}), where $\hat{H} = V^T HV$, $\hat{S} = V^T SV$

$$
\hat{\sigma}(\omega) = -\text{Im} \sum_{j=1}^{k} \hat{f}_j^2 \left[\frac{1}{\omega - \theta_j + i\eta} - \frac{1}{\omega + \theta_j + i\eta} \right]
$$
Connection with Reduced order models for linear dynamical systems

• Laplace transform of a linear dynamical system

\[\Sigma = \begin{cases}
(H - \omega S)x(\omega) = b \\
y(\omega) = c^T x
\end{cases} \]

• Transfer function:

\[y(\omega) = c^T (H - \omega S)^{-1} b \]

• Reduce order model:

\[\hat{\Sigma} = \begin{cases}
(\hat{H} - \omega \hat{S})\hat{x}(\omega) = \hat{b} \\
\hat{y}(\omega) = \hat{c}^T \hat{x} \\
\hat{y}(\omega) = \hat{c}^T (\hat{H} - \omega \hat{S})^{-1} \hat{b}
\end{cases} \]
Choice of the MOR Subspace

• Preserve spectral properties of the full model within the frequency interval of interest
 - E.g., Krylov subspace
 \[V = \text{orth} \left\{ \nu_0, S^{-1}H\nu_0, (S^{-1}H)^2\nu_0, \ldots \right\} \]
 - Provides a good approximation to the overall and both ends of spectrum of \((H, S)\)
 - Not sufficient for interior part of the spectrum

• Preserve additional (2 by 2 block) structure of the full model, and the pairing of the negative and positive eigenvalues
Structured Transformation

• Apply orthogonal $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$ to $G(\tilde{\omega})$

$$Q^T G(\tilde{\omega}) Q = \begin{pmatrix} K & 0 \\ 0 & M \end{pmatrix} - \tilde{\omega} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

where $K = A - B$, $M = A + B$ are symmetric positive definite

• Rewrite $\alpha(\tilde{\omega})$ as

$$\alpha(\tilde{\omega}) = \tilde{d}^T \tilde{G}(\tilde{\omega})^{-1} \tilde{d}$$

where $\tilde{d} = (d_x, d_y, d_z)$, $\tilde{G}(\tilde{\omega}) = MK - \tilde{\omega}^2 I$
MOR by K-inner product Lanczos

- MK is generally nonsymmetric, but it is self-adjoint with respect to K-inner product
 \[\langle x, MKy \rangle_K = x^T KMKy = \langle MKx, y \rangle_K \]
- A reduced order model can be constructed from a K-orthonormal basis of the Krylov subspace
 \(\{d, MKd, (MK)^2d, \ldots \} \)
 \[MKV_k = V_k T_k + f_k e_k^T, V_k^T K V_k = I_k, V_k^T K f_k = 0 \]
- \(\hat{\sigma}(\omega) = -\sum_{j=1}^{k} \tau_j^2 Im \left[\frac{1}{\omega - \theta_j + i\eta} + \frac{1}{\omega + \theta_j + i\eta} \right] \), where
 \[Ty_j = \theta_j y_j, \tau_j = e_{1}^T y_j \]
Numerical example

- P3B2 molecule
- Size of Kohn-Sham Hamiltonian
 $n = 1,364$
- $n_o = 305, n_v = 1,059$, dimension of the full H is:
 $2n_on_v = 645,990$, with frozen core approximation dimension reduces to 451,134
- Reduced order (Lanczos steps)
 $k = 400$
- Compare with
 - Time domain simulation: $\Delta t = 0.0048$ fs, $T = 25$ fs (~5200 steps)
 - Davidson algorithm for computing the lowest 100 eigenpairs of the full model
RT-TDDFT took 15 hours
• Davidson for 100 eigenpairs (up to 4 eV) 4 hours
• Lanczos-TDDFT 2.5 hours

400 Lanczos steps
Rational Interpolating MOR

• Interior part of the absorption spectrum describes core excitation (by e.g., X-rays), difficult to estimate by Lanczos based MOR

• Construct a subspace of the form
 \[V = \text{span}\{(H - \tau_1S)^{-1}d, (H - \tau_2S)^{-1}d, \ldots, (H - \tau_kS)^{-1}d\} \]
 where \(\tau_1, \tau_2, \ldots, \tau_k\) are carefully chosen interpolating frequencies, i.e.,
 \[\alpha(\tau_j) = \hat{\alpha}(\tau_j) \]
Exploiting structure again

• Construct a subspace of the form
 \[V = \text{span} \left\{ (MK - \tau_1^2 I)^{-1} d, (MK - \tau_2^2 I)^{-1} d, \ldots, (H - \tau_k^2 I)^{-1} d \right\} \]

• Make \(V \) \(K \)-orthonormal

• Projection: \(\hat{MK} = V^T KMKV \), \(\hat{d} = V^T K d \)

• Reduced order model:
 \[\hat{\sigma}(\omega) = -\text{Im} \left(\text{Tr} \left[\hat{d}^T (\hat{MK} - (\omega + i\eta)^2)^{-1} \hat{d} \right] \right) \]
Numerical example

- Water clusters with 5, 10, 15, 20, 25 water molecules
- Energy window \([540eV, 600eV]\)
- \(\eta = 1eV\)
- reduced order scale favorably

<table>
<thead>
<tr>
<th>#</th>
<th>Waters</th>
<th>#λ</th>
<th>GMRES tol = 10^{-4}</th>
<th>GMRES tol = 10^{-5}</th>
<th>GMRES tol = 10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,000</td>
<td>356</td>
<td>66</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>868</td>
<td>1,268</td>
<td>1,533</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.0</td>
<td>27.4</td>
<td>35.9</td>
</tr>
<tr>
<td>10</td>
<td>8,000</td>
<td>1,376</td>
<td>102</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,791</td>
<td>2,483</td>
<td>3,226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168.7</td>
<td>285.2</td>
<td>416.5</td>
</tr>
<tr>
<td>15</td>
<td>18,000</td>
<td>3,032</td>
<td>92</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,053</td>
<td>3,105</td>
<td>4,129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>844.0</td>
<td>1,290.8</td>
<td>1,711.7</td>
</tr>
<tr>
<td>20</td>
<td>32,000</td>
<td>5,282</td>
<td>120</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,651</td>
<td>3,359</td>
<td>4,583</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,210.0</td>
<td>4,161.9</td>
<td>5,818.5</td>
</tr>
<tr>
<td>25</td>
<td>50,000</td>
<td>8,172</td>
<td>121</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,857</td>
<td>3,736</td>
<td>5,123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,559.5</td>
<td>9,389.1</td>
<td>13,690.2</td>
</tr>
</tbody>
</table>
Matrix size $n = 50,000$, # eigenvalues = 8,172
Performance and scaling

(a) Wall time

(b) Total number of GEMMs
Solving the Linear Response Eigenvalue Problem

• Formulation:

1. \[
\begin{pmatrix}
A & B \\
-B & -A
\end{pmatrix} = \begin{pmatrix}
U & V \\
V & U
\end{pmatrix} \begin{pmatrix}
\Lambda & 0 \\
0 & -\Lambda
\end{pmatrix} \begin{pmatrix}
U & -V \\
-V & U
\end{pmatrix}^T
\]

2. \[
\begin{pmatrix}
0 & K \\
M & 0
\end{pmatrix} \begin{pmatrix}
Y \\
X
\end{pmatrix} = \begin{pmatrix}
Y \\
X
\end{pmatrix} \Lambda
\]

3. \[MKX = X\Lambda^2, KMY = Y\Lambda^2\]

• Interested in positive eigenvalues close to zero (valence excitation) or interior eigenvalues (core excitation)

• Use the fact that \(MK\) is self-adjoint with respect to \(K\);

• No need to compute both \(X\) and \(Y\) together;

\[Y = KXX\Lambda^{-1}\]
Optimization Based Approach

- Formulation: \(\min_{X,\Lambda} \frac{1}{2} \text{trace} \langle X, M K X \rangle_K \)
- Projected gradient: \(R = M K X - X \Lambda^2 \)
- \(K \)-inner product Davidson:
 - Extract approximation from
 \(S^{(i)} \leftarrow \text{span}\{S^{(i-1)}, T^{-1} R^{(i)}\} \)
- \(K \)-inner product LOBPCG
 - Approximate from
 \(\text{span}\{X^{(i)}, T^{-1} R^{(i)}, X^{(i-1)}\} \)
Preconditioner T

- Choose $T = D_K D_M$
- Choose $T = D^2$, where $D = \text{diag}\{\varepsilon_j - \varepsilon_a, \ldots\}$
- Choose $T_i = D_K D_M - \theta_i^2$, i.e.
 $$T^{-1} R = (T_1^{-1} R e_1, T_2^{-1} R e_2, \ldots)$$

- Flops: one K and M multiplications per iteration
- Memory: $3n_e$
Existing Algorithms

• Davidson based on:

\[
\begin{pmatrix}
S \\
S
\end{pmatrix}^T \begin{pmatrix}
0 & K \\
M & 0
\end{pmatrix} \begin{pmatrix}
Y \\
X
\end{pmatrix} - \begin{pmatrix}
Y \\
X
\end{pmatrix} \Theta = 0
\]

\[
S = \text{orth}\{S, T_K^{-1}R_K, T_M^{-1}R_M\}, R_K = KSX - SY\Theta
\]

• Minimization of Thoulous functional

\[
\min_{X^TY=I} \frac{1}{2} \text{trace} \left(X^T KX + Y^T M Y \right)
\]

Need both \(X\) and \(Y\), twice the amount of work, twice the memory footprint compared to K-inner product based algorithms
Example

• HBDMI:
 – Basis set: 6-31G
 – $n_o = 57$, $n_v = 207$
 – 5 eigenpairs

• Indigo:
 – Basis set: cc-pVTZ
 – $n_o = 68$, $n_v = 252$
 – 5 eigenpairs
MATVEC counts
Conclusion

• Absorption spectrum is a useful tool for screening molecules and materials for desirable optical properties
• In the linear response TDDFT framework, absorption spectrum can be accurately approximated by model order reduction techniques
• Valence excitation can be accurately approximated by K-inner product Lanczos
• Core absorption can be approximated by rational interpolating reduced order models
• Eigenpairs of the linear response operator provide a more precise description of the excitation process (hard to measure in experiments).
 – K-LOBPCG or K-Davidson is more efficient for positive eigenvalues close to 0
 – Interior eigenvalues need a different solver
• Further improve:
 – low rank approximation of the kernel matrices A, B to reduce the cost of matrix-vector (matrix) multiplication
 – Efficient solution of multiple related linear systems