The Role of Oxygen on the Dynamics of Seizure and Spreading Depression

Yina Wei
Allen Institute for Brain Science
Feb 14, 2018

Mathematical Modeling of Cortical Spreading Depression (SD) and Related Phenomena, University of Minnesota
Outline

• What is seizure?
• What is spreading depression?
• Commonality?
• What is missing in current model?
• Energy consumption in the brain
• Part I: oxygen and seizure dynamics
• Part II: oxygen and spreading depression
What is Seizure?

Epilepsy

• One of the most common brain disorders
• 1% world population, 3 million people in US
• characterized as the occurrence of repetitive Seizures

Seizure

• A sudden abnormal excessive neuronal activity
• Lasts from a few seconds to a few minutes

Cause

• Head trauma, stroke, brain infection etc.
What is Spreading Depression?

Spreading Depression (SD)
- a pathophysiologic phenomenon occurred during migraine, head trauma, and stroke.
- nearly complete depolarization
- propagates 2-5 mm/min

SD can be induced by

Hypoxia

![Hypoxia graph]

Czech et al., 1993 Brain Research

High potassium

![High potassium graph]

Brisson and Andrew, 2012, J Neurophysiol
The Commonalities

Seizures

Hypoxia Spreading Depression

Commonalities:
• Shifts of extracellular potential
• Redistribution of ions between intracellular and extracellular space
• Can be induced by low oxygen and high potassium, etc.

Czech et al., 1993 Brain Research
High K^+ Makes Seizures and SD

Timeline Spont. Seizures

8.5 mM

Traynelis & Dingledine 1988

26 mM

Anderson & Andrew, 2002 J Neurophys

40 mM

Zhou et al., 2010 Cereb Ctx

2/14/18
Brains Hypoxic during Seizures and SD

In Vitro Seizure

[Bahar et al., 2006 NeuroReport](#)

[O_2] Determines Duration SD

[Takano et al. 2007](#)

2/14/18
What is Missing in Current Models?

Hodgkin–Huxley Model: assumes ion concentrations are constant.

Seizures or SD: loss of ionic homeostasis.

Current Models: assumes energy (oxygen) is infinitely available.

Cressman et al., 2009, Ullah et al., 2009: Seizure model
Bazhenov et al., 2004, Krishnan et al., 2011: Seizure model
Energy consumption in brain

Distribution of Energy Used in Spikes:

1. **Restore Ion Gradient**
2. **Transmitters Release and Recycling**

\[\text{Na/K pump} \]

\[3 \text{Na}^+ + \text{ATP} \rightarrow 2 \text{K}^+ \]

\[\text{Out} \]

\[\text{In} \]

\[\text{Na}^+ \]

\[\text{K}^+ \]

\[\text{Cl}^- \]

\[\text{Presynaptic Ca}^{2+} \]

\[\text{Glutamate Cycling} \]

\[\text{Axon} 33\% \]

\[\text{EPSPs} 52\% \]

\[\text{Soma} 6\% \]

\[\text{Dendrites} \]

\[\text{The Cost of Cortical Computation} \]

Lennie, 2003, Current Biology

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O} + 36 \text{ATP} \]
Part I: Oxygen and Seizure
Experimental O_2 Observations

1) Seizure
=> O_2 Deficit

2) Narrow Band O_2
=> Seizure

3) E & I Interplay
=> O_2 Interplay

Ingram et al., 2014 J Neurophys

Mathematical Model

Membrane Potential Dynamics: (Hodgkin Huxley Equations)

\[
\frac{dV}{dt} = \frac{1}{C}(-I_{Na} - I_{K} - I_{Cl})
\]

\[
I_{Na} = G_{Na} m^3 h (V - E_{Na}) + G_{NaL} (V - E_{Na})
\]

\[
I_{K} = G_{K} n^4 (V - E_{K}) + G_{KL} (V - E_{K})
\]

\[
I_{Cl} = G_{Cl} (V - E_{Cl})
\]

\[
E_x = 26.64 \ln\left(\frac{[x]_o}{[x]_i}\right), x = Na, K, Cl
\]

Ion Concentration Dynamics: Cressman et al. 2009

\[
\frac{d[K]_o}{dt} = \gamma \beta I_{K} - 2 \beta I_{pump} - I_{glia} - I_{diff}
\]

\[
[K]_i = 140 + (18 - [Na]_i)
\]

\[
\frac{d[Na]_i}{dt} = -\gamma I_{Na} - 3I_{pump}
\]

\[
[Na]_o = 144 - \beta([Na]_i - 18)
\]
Mathematical Model

Diffusion, Pump and Glial Uptake Currents:

\[I_{\text{diff}} = \varepsilon_k ([K]_o - [K]_{\text{bath}}) \]

\[I_{\text{pump}} = \frac{\rho}{1.0 + \exp((25 - [Na]_i) / 3)} \times \frac{1.0}{1.0 + \exp(5.5 - [K]_o)} \]

\[I_{\text{gliapump}} = \frac{1}{3} \frac{\rho}{1 + \exp((25 - [Na]_{ig}) / 3)} \times \frac{1.0}{1.0 + \exp(5.5 - [K]_o)} \]

\[I_{\text{glia}} = 2I_{\text{gliapump}} + \frac{\text{glia}}{1.0 + \exp((18 - [K]_o) / 2.5)} \]

Oxygen Dynamics:

\[\frac{d[O_2]_o}{dt} = -\alpha \lambda (I_{\text{pump}} + I_{\text{gliapump}}) + \varepsilon_o ([O_2]_{\text{bath}} - [O_2]_o) \]
Mathematical Model

Diffusion, Pump and Glial Uptake Currents:

\[I_{\text{diff}} = \varepsilon_k ([K]_o - [K]_{\text{bath}}) \]

\[I_{\text{pump}} = \frac{\rho}{1.0 + \exp((25 - [Na]_i) / 3)} \times \frac{1.0}{1.0 + \exp(5.5 - [K]_o)} \]

\[I_{\text{gliapump}} = \frac{1}{3} \frac{\rho}{1 + \exp((25 - [Na]_{ig}) / 3)} \times \frac{1.0}{1.0 + \exp(5.5 - [K]_o)} \]

\[I_{\text{glia}} = 2I_{\text{gliapump}} \frac{\rho_{\text{glia}}}{1.0 + \exp((18 - [K]_o) / 2.5)} \]

Oxygen Dynamics:

\[\frac{d[O_2]_o}{dt} = -\alpha \lambda (I_{\text{pump}} + I_{\text{gliapump}}) + \varepsilon_o ([O_2]_{\text{bath}} - [O_2]_o) \]

\[\rho = \frac{\rho_{\text{max}}}{1 + \exp((20 - [O_2]_o) / 3)} \]

the Na/K ATPase as a Function Of O2

Petrushanko et al. 2007
Potassium-induced Spontaneous Seizure

Experiment

Timeline Spont. Seizures

Model

Traynelis & Dingledine 1988

Experiment

Model
Oxygen Dynamics around Single Cell

Experiment

Ingram et al., 2014 J Neurophys
Oxygen Dynamics around Single Cell

Experiment

Model

Ingram et al., 2014 J Neurophys

Wei, Ingram, Ullah, Schiff, 2014 J Neurophys
Bifurcation Analysis with Fixed Ion Concentrations

Bazhenov et al 2004 J Neurphysiol ; Krishnan and Bazhenov, 2011 J Neurosci; Barreto et al 2011 J Biol Phys; Wei, Ingram, Ullah, Schiff, 2014 J Neurophys

Hopf Bifurcation (HB): a limit cycle decreases until it is reduced to a point and disappears.

Saddle Node Bifurcation (SN): two equilibrium points collide and disappear.
Bifurcation Analysis

\[
\frac{d[O_2]_o}{dt} = -\alpha \lambda (I_{pump} + I_{gliapump}) + \varepsilon_o ([O_2]_{bath} - [O_2]_o)
\]

![Graph showing bifurcation analysis with [O_2] values and corresponding V values and time].

K_o, Na_i, constrained K_i, Na_o

Wei, Ingram, Ullah, Schiff, 2014 J Neurophys
Bifurcation in Normal $[K^+]_{\text{bath}}$

Experiment

Model

Ingram et al., 2014 J Neurophys

Wei, Ingram, Ullah, Schiff, 2014 J Neurophys
[O₂]_{bath} Bifurcation in Normal [K^+]_{bath}

Wei, Ingram, Ullah, Schiff, 2014, J Neurophys
Excitatory and Inhibitory Interplay

Experiment

Ingram et al., 2014 J Neurophysiol.
Gradient, Not Spikes, Drives O2 Use

Model

![Graph of gradient, not spikes, drives O2 use](image)

Wei, Ingram, Ullah, Schiff, 2014 J Neurophysi
Short Summary

- **O₂ Deficit after Seizure**
- **Hypoxia Induces Seizures**
- **Neuron vs. Oxygen Interplay**

- By pump
- + from bath

2/14/18
Part II: Oxygen and Spreading Depression
SD Model
-Adding Chloride and Volume

Osmotic Pressure:

\[P_i = [\text{Na}^+]_i + [\text{K}^+]_i + [\text{Cl}^-]_i + A_i \]
\[P_o = [\text{Na}^+]_o + [\text{K}^+]_o + [\text{Cl}^-]_o + A_o \]

Volume Regulation:

\[\frac{d\text{Vol}}{dt} \sim (P_i - P_o) \]

Dreier, 2011
Nature Medicine
Dynamics for All Ions – Keep track of N

\[
\begin{align*}
\frac{dN K^+}{dt} &= \frac{1}{\tau} \left(\gamma_3 (I_K - 2 I_{pump}) - I_{diff} - I_{glia} - 2 \gamma I_{gliapump} + \beta I_{kcc2} + \beta I_{nkcc1} \right) \times Vol_o \\
\frac{dN K^+_i}{dt} &= \frac{1}{\tau} \left(-\gamma (I_K - 2 I_{pump}) - I_{kcc2} - I_{nkcc1} \right) \times Vol_i \\
\frac{dN Na^+}{dt} &= \frac{1}{\tau} \left(\gamma_3 (I_{Na} + 3 I_{pump}) + \beta I_{nkcc1} \right) \times Vol_o \\
\frac{dN Na^+_i}{dt} &= \frac{1}{\tau} \left(-\gamma (I_{Na} + 3 I_{pump}) - I_{nkcc1} \right) \times Vol_i \\
\frac{dN Cl^-}{dt} &= \frac{1}{\tau} \left(-\gamma_3 I_{Cll} + \beta I_{kcc2} + 2 \beta I_{nkcc1} \right) \times Vol_o \\
\frac{dN Cl^-_i}{dt} &= \frac{1}{\tau} \left(\gamma I_{Cll} - I_{kcc2} - 2 I_{nkcc1} \right) \times Vol_i \\
\end{align*}
\]

\[E_{Na} = 26.64 \ln \left(\frac{[Na^+]_o}{[Na^+]_i} \right)\]
\[E_{K} = 26.64 \ln \left(\frac{[K^+]_o}{[K^+]_i} \right)\]
\[E_{Cl} = 26.64 \ln \left(\frac{[Cl^-]_i}{[Cl^-]_o} \right)\]
Seizure and Spreading Depression

Wei, Ullah, Schiff, 2014 J Neuroscience
Model Variables during SD

Wei, Ullah, Schiff, 2014 J Neuroscience
Hypoxic SD

Wei, Ullah, Schiff, 2014 J Neuroscience

Czeh et al., 1993 Brain Research
Wave of Death (Zandt et al, 2011 PLOS ONE)
Increased O$_2$ Availability

$[O_2]$ Determines Duration SD

Takano et al 2007 Nat Neurosci

Wei, Ullah, Schiff, 2014 J Neuroscience
The Unification of Seizures and SD

Local potassium changes as a function of bath potassium and bath oxygen

\[
\begin{align*}
\text{Local potassium changes as a function of bath potassium and bath oxygen} \\
\text{[K^+]}_{\text{bath}} \text{ around 8 - 12 mM: bursting (Rutecki1985) and seizures (Traynelis1988)} \\
\text{[K^+]}_{\text{bath}} \text{ around 26 mM: spreading depression (Anderson 2002)}
\end{align*}
\]
Double Bifurcation Preserved with Goldman-Hodgkin-Katz current equation

\[I_{HH} = G \times (V - E) = G \times (V - \frac{RT}{zF} \ln\left(\frac{C_o}{C_i}\right)) \]

\[I_{GHK} = P \times \frac{z^2 F^2 V}{RT} \frac{C_i - C_o \exp\left(-\frac{zFV}{RT}\right)}{1 - \exp\left(-\frac{zFV}{RT}\right)} \]

Wei, Ullah, Schiff, 2014 J Neuroscience
Acknowledgements

Steven J. Schiff Ghanim Ullah Justin M. Ingram

US-German Collaborative Research in Computational Neuroscience (CRCNS)

Code Archive: https://scholarsphere.psu.edu/
Thanks for Your Attention and Any Questions?