Spectral analysis of high-dimensional time series with applications to the mean-variance frontier

Alexander Aue
Department of Statistics & GGAM
University of California, Davis
aaue@ucdavis.edu

With Haoyang Liu (Finance, Florida State) and Debashis Paul (Statistics, UC Davis)
Research partially supported by NSF grant DMS 1407530
A. Introduction

- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case
OUTLINE

A. INTRODUCTION

• High-dimensional statistics & random matrix theory
• The sample covariance matrix
• Results for the empirical spectral distribution in the i.i.d. case
• Existing literature on the dependent case

B. SPECTRAL THEORY FOR LINEAR TIME SERIES

• Eigenvalue distribution of sample covariance matrix
• Eigenvalue distribution of symmetrized sample autocovariance matrix
• Proof techniques for MA(1) case
OUTLINE

A. INTRODUCTION

• High-dimensional statistics & random matrix theory
• The sample covariance matrix
• Results for the empirical spectral distribution in the i.i.d. case
• Existing literature on the dependent case

B. SPECTRAL THEORY FOR LINEAR TIME SERIES

• Eigenvalue distribution of sample covariance matrix
• Eigenvalue distribution of symmetrized sample autocovariance matrix
• Proof techniques for MA(1) case

C. ESTIMATION OF QUADRATIC FORMS FOR TIME SERIES

• Uses spectral theory results
• Applies to mean-variance frontier estimation in finance
• Uses thresholding and cross-validation approach
• Empirical results
A. **Introduction**
- High-dimensional statistics & random matrix theory
- The sample covariance matrix
- Results for the empirical spectral distribution in the i.i.d. case
- Existing literature on the dependent case

B. **Spectral Theory for Linear Time Series**
- Eigenvalue distribution of sample covariance matrix
- Eigenvalue distribution of symmetrized sample autocovariance matrix
- Proof techniques for MA(1) case

C. **Estimation of Quadratic Forms for Time Series**
- Uses spectral theory results
- Applies to mean-variance frontier estimation in finance
- Uses thresholding and cross-validation approach
- Empirical results

D. **Conclusions**
A. Introduction
Random Matrix Theory (RMT)

- Origins of RMT
 - Initially used in physics to study quantum phenomena of heavy atoms
 - Energy levels of a system described by eigenvalues of Hamiltonian operator
 - Explicit calculations only possible for low-energy levels but not for high-energy levels
 - Wigner (1955, 1958): Energy levels described by eigenvalues of random matrix

- Applications of RMT in statistics
 - Include problems in dimension reduction, hypothesis testing, clustering, regression analysis and covariance estimation
 - Much of the literature covers the behavior of the sample covariance matrix and the behavior of the bulk spectrum: empirical spectral distribution
 - Behavior of the edge of the spectrum: extreme (largest/smallest) eigenvalues
 - Distribution of spacings of eigenvalues
 - Behavior of eigenvectors

- Paul & A (2014), Review paper
Random Matrix Theory (RMT)

- Origins of RMT
 - Initially used in physics to study quantum phenomena of heavy atoms
 - Energy levels of a system described by eigenvalues of Hamiltonian operator
 - Explicit calculations only possible for low-energy levels but not for high-energy levels
 - Wigner (1955, 1958): Energy levels described by eigenvalues of random matrix

- Applications of RMT in statistics
 - Include problems in dimension reduction, hypothesis testing, clustering, regression analysis and covariance estimation
 - Much of the literature covers the behavior of the sample covariance matrix and the
 * behavior of the bulk spectrum: empirical spectral distribution
 * behavior of the edge of the spectrum: extreme (largest/smallest) eigenvalues
 * distribution of spacings of eigenvalues
 * behavior of eigenvectors
 - Paul & A (2014), review paper
Asymptotic Setting

• Connecting dimension with sample size
 • Suppose \(\mathbf{X} \) is a \(p \times n \) matrix with real- or complex-valued entries and independent columns
 • Specify that \(p = p(n) \) and that

\[
\lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty)
\]

(1)
Asymptotic Setting

- *Connecting dimension with sample size*
 - Suppose \mathbf{X} is a $p \times n$ matrix with real- or complex-valued entries and independent columns
 - Specify that $p = p(n)$ and that
 \[
 \lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty)
 \]
 (2)

- *Wigner matrices*
 - Used as model for spectra of heavy atoms
 - Here $p = n$ such that $X_{ij} = X_{ji}$ (symmetric/Hermitian; diagonal always real-valued)
 - X_{ij} independent, standardized; diagonal variances often different from off-diagonal variances
Asymptotic Setting

• Connecting dimension with sample size
 • Suppose X is a $p \times n$ matrix with real- or complex-valued entries and independent columns
 • Specify that $p = p(n)$ and that
 \[
 \lim_{n \to \infty} \frac{p}{n} = \gamma \in (0, \infty)
 \]

• Wigner matrices
 • Used as model for spectra of heavy atoms
 • Here $p = n$ such that $X_{ij} = \overline{X}_{ji}$ (symmetric/Hermitian; diagonal always real-valued)
 • X_{ij} independent, standardized; diagonal variances often different from off-diagonal variances

• Wishart matrices
 • Naturally arise as XX^\top
 • Note again the close connection to $S = n^{-1}XX^\top$
How to Study Eigenvalues

- Goal is to understand large-sample behavior of eigenvalues
 - Eigenvalues of Wigner and Wishart matrices are real
 - But underlying matrix space is changing with p and n
 - No accumulation of degrees of freedom

- Empirical spectral distribution (ESD)
 - For any $N \times N$ matrix Y with eigenvalues $\lambda_1, \ldots, \lambda_N$ defined as
 \[
 N^{-1} \sum_{j=1}^{N} \mathbb{1}_{\{\lambda_j \leq x\}}
 \]
 - For Hermitian Y this gives a mapping $F_Y: \mathbb{R} \to [0, 1], x \mapsto 1 - \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}_{\{\lambda_j \leq x\}}$
 - called the ESD of Y
 - The ESD is the fundamental object to conduct large-sample analysis in RMT
 - Linear spectral statistics (LSS)
 \[
 R_g(x) \, dF_Y(x)
 \]
 can be understood in terms of ESD
How to Study Eigenvalues

- Goal is to understand large-sample behavior of eigenvalues
 - Eigenvalues of Wigner and Wishart matrices are real
 - But underlying matrix space is changing with p and n
 - No accumulation of degrees of freedom

- Empirical spectral distribution (ESD)
 - For any $N \times N$ matrix Y with eigenvalues $\lambda_1, \ldots, \lambda_N \in \mathbb{C}$ defined as $N^{-1} \sum_{\ell=1}^{N} \delta_{\lambda_{\ell}}$
 - For Hermitian Y this gives a mapping
 \[
 F_Y : \mathbb{R} \to [0, 1], \ x \mapsto \frac{1}{N} \sum_{\ell=1}^{N} \mathbf{1}_{\{\lambda_{\ell} \leq x\}},
 \]
 called the ESD of Y
 - The ESD is the fundamental object to conduct large-sample analysis in RMT
 - Linear spectral statistics (LSS) $\int g(x) dF_Y(x)$ can be understood in terms of ESD
Spectrum of Sample Covariance Matrix

• A simple example

 • Take \(n = 10 \) observations of \(p = 10 \) dimensional centered Gaussian random vectors with identity population covariance matrix \(\Sigma = I_{10} \)

 • Population eigenvalues are \(\ell_1 = \cdots = \ell_{10} = 1 \)

 • Sample eigenvalues \(\hat{\ell}_1, \ldots, \hat{\ell}_{10} \) of \(S \) show an extreme spread

 • A typical sample would give

 \[
 0.003, \ 0.036, \ 0.095, \ 0.160, \ 0.300, \ 0.510, \ 0.780, \ 1.120, \ 1.400, \ 3.070
 \]

 with variation over three orders of magnitude

 • Could conclude from sample that population eigenvalues are different from each other
Spectrum of Sample Covariance Matrix

- A simple example
 - Take $n = 10$ observations of $p = 10$ dimensional centered Gaussian random vectors with identity population covariance matrix $\Sigma = I_{10}$
 - Population eigenvalues are $\lambda_1 = \cdots = \lambda_{10} = 1$
 - Sample eigenvalues $\hat{\lambda}_1, \ldots, \hat{\lambda}_{10}$ of S show an extreme spread
 - A typical sample would give

 \begin{align*}
 0.003, & \quad 0.036, \quad 0.095, \quad 0.160, \quad 0.300, \quad 0.510, \quad 0.780, \quad 1.120, \quad 1.400, \quad 3.070
 \end{align*}

 with variation over three orders of magnitude
 - Could conclude from sample that population eigenvalues are different from each other

- Two immediate questions
 - Does this phenomenon go away with larger n, p?
 - If not, what explains this disconnect between population and sample eigenvalues?
Spectrum of Sample Covariance Matrix

- Empirical spectrum of S for $n = 1000$ and $p = 1000$
Spectrum of Sample Covariance Matrix

- Empirical spectrum of S for $n = 1000$ and $p = 500$
Spectrum of Sample Covariance Matrix

- Empirical spectrum of S for $n = 1000$ and $p = 250$
Spectrum of Sample Covariance Matrix

- Empirical spectrum of S for $n = 1000$ and $p = 100$
The Marčenko–Pastur Law

- **Assumptions**
 - Let $X_t = (X_{1t}, \ldots, X_{pt})^\top$, $t = 1, \ldots, n$, be observed
 - The entries X_{jt} are iid such that $\mathbb{E}[X_{11}] = 0$, $\mathbb{E}[|X_{11}|^2] = 1$ and $\mathbb{E}[|X_{11}|^4] < \infty$
The Marčenko–Pastur Law

- **Assumptions**
 - Let $X_t = (X_{1t}, \ldots, X_{pt})^\top$, $t = 1, \ldots, n$, be observed
 - The entries X_{jt} are iid such that $E[X_{11}] = 0$, $E[|X_{11}|^2] = 1$ and $E[|X_{11}|^4] < \infty$

- **Under (3), the ESD \(\hat{F} \) converges almost surely to a nonrandom limiting distribution \(F_\gamma \)**
 - If $\gamma \leq 1$, the limiting distribution is continuous with density

$$f_\gamma(\lambda) = \frac{1}{2\pi\gamma} \sqrt{\frac{(b - \lambda)(\lambda - a)}{\lambda^2}} 1_{[a,b]}(\lambda),$$

 where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$

 - If $\gamma > 1$, the limiting distribution is a mixture of a point mass at 0 with weight $1 - 1/\gamma$ and the density f_γ with weight $1/\gamma$
The Marčenko–Pastur Law

• **Assumptions**
 - Let $X_t = (X_{1t}, \ldots, X_{pt})^\top$, $t = 1, \ldots, n$, be observed
 - The entries X_{jt} are iid such that $\mathbb{E}[X_{11}] = 0$, $\mathbb{E}[|X_{11}|^2] = 1$ and $\mathbb{E}[|X_{11}|^4] < \infty$

• **Under (3), the ESD \hat{F} converges almost surely to a nonrandom limiting distribution F_γ**
 - If $\gamma \leq 1$, the limiting distribution is continuous with density
 \[
 f_\gamma(\lambda) = \frac{1}{2\pi \gamma} \sqrt{(b - \lambda)(\lambda - a)} \frac{1}{\lambda^2} 1_{[a, b]}(\lambda),
 \]
 where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$
 - If $\gamma > 1$, the limiting distribution is a mixture of a point mass at 0 with weight $1 - 1/\gamma$ and the density f_γ with weight $1/\gamma$

• **Consequences**
 - Spreading of the eigenvalues of S around the eigenvalues of Σ even in the limit
 - If $p/n \to 0$, the largest and smallest eigenvalue converge to 1 and classical results are retained
The Marčenko–Pastur Law

- MP law densities for different choices of $\gamma = \lim_{n \to \infty} \frac{p}{n}$
Stieltjes Transforms

- **Background**
 - Used extensively for determining limit behavior of ESD
 - Role in RMT similar to that of Fourier transform in probability theory
Stieltjes Transforms

- **Background**
 - Used extensively for determining limit behavior of ESD
 - Role in RMT similar to that of Fourier transform in probability theory

- **Definition and inversion formula**
 - The Stieltjes transform of measure μ on \mathbb{R} is
 \[
 s : \mathbb{C}^+ \to \mathbb{C}_+, \quad z \mapsto \int \frac{1}{x - z} d\mu(x),
 \]
 where $\mathbb{C}^+ = \{ z \in \mathbb{C} : \Im(z) > 0 \}$ is the complex upper half-plane
 - s is analytic on \mathbb{C}^+
 - If $a < b$ are continuity points of a real probability measure μ, then
 \[
 \mu(a, b) = \frac{1}{\pi} \lim_{v \to 0^+} \frac{1}{v} \int_a^b \Im(s(u + iv)) du, \quad z = u + iv
 \]
Resolvents and Stieltjes Transforms

- Need the concept of resolvent
 - Connection between sample covariance matrix S, ESD \hat{F} and Stieltjes transform $\hat{s} = s^{\hat{F}}$
 - The resolvent of S is

$$R(z) = (S - zI)^{-1}, \quad z \in \mathbb{C}^+$$
Resolvents and Stieltjes Transforms

- Need the concept of resolvent
 - Connection between sample covariance matrix S, ESD \hat{F} and Stieltjes transform $\hat{s} = s^\hat{F}$
 - The resolvent of S is
 \[R(z) = (S - zI)^{-1}, \quad z \in \mathbb{C}^+ \]

- Convergence of ESD through convergence of Stieltjes transform
 - The Stieltjes transform of the ESD can be expressed as
 \[
 \hat{s}(z) = \int \frac{1}{\lambda - z} d\hat{F}(\lambda) = \frac{1}{p} \sum_{j=1}^{p} \frac{1}{\lambda_j - z} = \frac{1}{p} \text{tr}[(S - zI)^{-1}] = \frac{1}{p} \text{tr}[R(z)]
 \]
High-Dimensional Time Series

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages
High-Dimensional Time Series

• Univariate and multivariate linear time series have been studied extensively
 • Rather complete picture of strength and weaknesses of ARMA models
 • Many extensions available
 • Ready-to-use computer packages

• Curse of dimensionality
 • If dimension grows proportionally with the sample size, estimation becomes impossible
 • Assumptions on coefficient matrices are needed
 • Typically through imposing sparsity
High-Dimensional Time Series

- *Univariate and multivariate linear time series have been studied extensively*
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages

- *Curse of dimensionality*
 - If dimension grows proportionally with the sample size, estimation becomes impossible
 - Assumptions on coefficient matrices are needed
 - Typically through imposing sparsity

- *Few results in the literature*
 - Review is given below
 - Existing contributions only touch the surface
 - Most of them are related to spectrum of sample covariance matrix
• Let Z_{jt} be standard normal and define the two processes $X_{t}^{\text{ind}} = Z_{t}$ and $X_{t}^{\text{dep}} = (Z_{t} + Z_{t-1})/\sqrt{2}$ as well as the sample covariance matrices $S_{\text{ind}} = \frac{1}{n}X^{\text{ind}}(X^{\text{ind}})^*$ and $S_{\text{dep}} = \frac{1}{n}X^{\text{dep}}(X^{\text{dep}})^*$.
Let Z_{jt} be standard normal and define the two processes $X_{t}^{\text{ind}} = Z_{t}$ and $X_{t}^{\text{dep}} = (Z_{t} + Z_{t-1})/\sqrt{2}$ as well as the sample covariance matrices $S_{\text{ind}} = \frac{1}{n}X^{\text{ind}}(X^{\text{ind}})^{*}$ and $S_{\text{dep}} = \frac{1}{n}X^{\text{dep}}(X^{\text{dep}})^{*}$.

Even though $\mathbb{E}[S^{\text{ind}}] = \mathbb{E}[S^{\text{dep}}]$, a comparison of eigenvalues (shown with $p = 1000$, $n = 2000$) reveals that the limiting behavior of the ESDs \hat{F}^{ind} and \hat{F}^{dep} is different.

How can this time series effect be quantified?
High-Dimensional Time Series

- Empirical spectrum of S for $n = 2000$ and $p = 1000$: Independent case
High-Dimensional Time Series

- Empirical spectrum of S for $n = 2000$ and $p = 1000$: Independent versus MA(1) case
High-Dimensional Time Series

- Empirical spectrum of S for $n = 2000$ and $p = 1000$: Independent versus MA(2) case
B. Spectral Theory for Linear Time Series
Goal is to introduce framework that allows for

- description of linear processes in high-dimension
- characterization of eigenvalues of sample covariance matrix
- characterization of eigenvalues of symmetrized autocovariance matrices

• Studied the linear time series model

\[X_{jt} = \sum_{t'=0}^{\infty} \alpha_{t'} Z_{j,t-t'}, \]

with \((Z_{jt}: t \in \mathbb{Z}) \sim WN(0, 1)\) and independent rows \(Z_1, \ldots, Z_p\)
Literature Review

 • Studied the linear time series model

\[X_{jt} = \sum_{t'=0}^{\infty} \alpha_{t'} Z_{j,t-t'}, \]

with \((Z_{jt}: t \in \mathbb{Z}) \sim \text{WN}(0, 1)\) and independent rows \(Z_1, \ldots, Z_p\)

 • Studied the behavior of symmetrized autocovariance matrices in the independent case
Literature Review

 Yao (2012), Statistics & Probability Letters 82, 22–28
 • Studied the linear time series model
 \[X_{jt} = \sum_{t' = 0}^{\infty} \alpha_{t'} Z_{j,t-t'}, \]
 with \((Z_{jt} : t \in \mathbb{Z}) \sim\) WN(0, 1) and independent rows \(Z_1, \ldots, Z_p\)

• Jin et al. (2014), The Annals of Applied Probability 24, 1199–1225
 • Studied the behavior of symmetrized autocovariance matrices in the independent case

• Hachem et al. (2005), Markov Processes and Related Fields 11, 629–648
 • Studied the bi-stationary Gaussian process
 \[X_{jt} = \sum_{j',t' \in \mathbb{Z}} h(j',t') Z_{j-j',t-t'}, \]
 with \(h \in \ell^1(\mathbb{Z}^2)\) deterministic and \((Z_{jt} : j, t \in \mathbb{Z})\) iid real/complex standard normal
Assumptions for a Simple Time Series

- *Study first the MA(1) process* $X_t = Z_t + A_1 Z_{t-1}$ *satisfying*

 (A1) A_1 is a $p \times p$ Hermitian, possibly random, matrix independent of $(Z_t: t \in \mathbb{Z})$

 (A2) The ESD $F_p^{A_1}$ of A_1 converges weakly to a nonrandom probability distribution F^A (almost surely); there is $\lambda_A \geq 0$ such that $\|A_1\| \leq \lambda_A$ (almost surely) for large p
Assumptions for a Simple Time Series

- Study first the MA(1) process \(X_t = Z_t + A_1 Z_{t-1} \) satisfying

 (A1) \(A_1 \) is a \(p \times p \) Hermitian, possibly random, matrix independent of \((Z_t: t \in \mathbb{Z})\)

 (A2) The ESD \(F_{p_{A_1}} \) of \(A_1 \) converges weakly to a nonrandom probability distribution \(F_{A_1} \) (almost surely); there is \(\lambda_A \geq 0 \) such that \(\|A_1\| \leq \lambda_A \) (almost surely) for large \(p \)

- Motivation for assumptions

 - Interest is in the spectrum of the covariance matrix \(S \)

 - For an MA(1) process, we have \(\mathbb{E}[S] = I + A_1 A_1^* \)

 - The moments of the ESD of \(S \) depend on the trace of polynomials in \(A_1, A_1^* \) and \(A_1 A_1^* \)

 - (A1) and (A2) ensure that the limiting ESD of \(S \) depends only on the limiting ESD of \(A_1 \)

 - Without these restrictions on \(A_1 \), it is not clear what limit the ESD of \(S \) would have
Intuition for MA(1) Processes

- The limiting Stieltjes transform of \hat{F} (ESD of S) involves

$$h(\lambda, \nu) = 1 + 2 \cos(\nu) \lambda + \lambda^2, \quad \nu \in [0, 2\pi], \lambda \in \mathbb{R},$$

- $h(\lambda, \cdot)$ is (up to normalization) the spectrum of the scalar MA(1) process $(x_t : t \in \mathbb{Z})$ given by

$$x_t = z_t + \lambda z_{t-1}, \quad t \in \mathbb{Z}$$
Intuition for MA(1) Processes

• The limiting Stieltjes transform of \hat{F} (ESD of S) involves

$$ h(\lambda, \nu) = 1 + 2\cos(\nu)\lambda + \lambda^2, \quad \nu \in [0, 2\pi], \lambda \in \mathbb{R}, $$

• $h(\lambda, \cdot)$ is (up to normalization) the spectrum of the scalar MA(1) process $(x_t: t \in \mathbb{Z})$ given by $x_t = z_t + \lambda z_{t-1}, t \in \mathbb{Z}$

• The limiting Stieltjes transform of the ESD \hat{F} is determined from the Stieltjes kernel

$$ K(z, \nu) = s^{(0)}(z) + 2\cos(\nu)s^{(1)}(z) + s^{(2)}(z), \quad z \in \mathbb{C}^+, \nu \in [0, 2\pi], $$

where

• $s^{(k)}(z) = \lim_{n \to \infty} \frac{1}{p} \text{tr}[(S - zI)^{-1}A_1^k], k = 0, 1, 2$, where the limits exist in an a.s. sense

• $s(z) = s^{(0)}(z)$ is the limiting Stieltjes transform of \hat{F}
Theorem 1: Suppose the MA(1) process \((X_t: t \in \mathbb{Z})\) satisfies assumptions \((A1)\) and \((A2)\). Then, almost surely, \(\hat{F}\) converges in distribution to a nonrandom probability distribution \(F\) with Stieltjes transform \(s(z)\) given by

\[
s(z) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^A(\lambda),
\]

where \(K(z, \nu)\) is the unique solution to the nonlinear equation

\[
K(z, \nu) = \int h(\lambda, \nu) \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu')}{1 + cK(z, \nu')} d\nu' - z \right]^{-1} dF^A(\lambda),
\]

for \(\nu \in [0, 2\pi]\), with \(K(z, \nu)\) satisfying the requirement that, for any \(\nu \in [0, 2\pi]\), it is the Stieltjes transform of a measure on \(\mathbb{R}\) with total mass \(\int h(\lambda, \nu)dF^A(\lambda)\).
Proof 1: Transformation to Independence

- Assume Gaussianity of Z_1, \ldots, Z_n
Proof 1: Transformation to Independence

- Assume Gaussianity of Z_1, \ldots, Z_n

- Let $L = [o : e_1 : \cdots : e_{n-1}]$ and $\tilde{L} = [e_n : e_1 : \cdots : e_{n-1}]$ be the $n \times n$ lag operator and its approximating circulant matrix, respectively, where o denotes the n-dimensional zero vector and e_j the jth canonical unit vector. Then, with $X = [X_1 : \cdots : X_n]$ and $Z = [Z_1 : \cdots : Z_n],$

\[
X = Z + A_1 Z L \quad \text{and} \quad X_1 = Z + A_1 Z \tilde{L},
\]

where X_1 is a redefinition of X such that only the first column is changed to $Z_1 + A_1 Z_n$
Proof 1: Transformation to Independence

- Assume Gaussianity of Z_1, \ldots, Z_n

- Let $L = [o : e_1 : \cdots : e_{n-1}]$ and $\tilde{L} = [e_n : e_1 : \cdots : e_{n-1}]$ be the $n \times n$ lag operator and its approximating circulant matrix, respectively, where o denotes the n-dimensional zero vector and e_j the jth canonical unit vector. Then, with $X = [X_1 : \cdots : X_n]$ and $Z = [Z_1 : \cdots : Z_n]$,

\[
X = Z + A_1 ZL \quad \text{and} \quad X_1 = Z + A_1 Z\tilde{L},
\]

where X_1 is a redefinition of X such that only the first column is changed to $Z_1 + A_1 Z_n$

- Since \tilde{L} is a circulant matrix, it diagonalizes in the complex Fourier basis $U_{\tilde{L}}$.

Proof 1: Transformation to Independence

- Assume Gaussianity of \(Z_1, \ldots, Z_n\)

- Let \(L = [o : e_1 : \cdots : e_{n-1}]\) and \(\tilde{L} = [e_n : e_1 : \cdots : e_{n-1}]\) be the \(n \times n\) lag operator and its approximating circulant matrix, respectively, where \(o\) denotes the \(n\)-dimensional zero vector and \(e_j\) the \(j\)th canonical unit vector. Then, with \(X = [X_1 : \cdots : X_n]\) and \(Z = [Z_1 : \cdots : Z_n]\),

\[
X = Z + A_1 ZL \quad \text{and} \quad X_1 = Z + A_1 Z\tilde{L},
\]

where \(X_1\) is a redefinition of \(X\) such that only the first column is changed to \(Z_1 + A_1 Z_n\)

- Since \(\tilde{L}\) is a circulant matrix, it diagonalizes in the complex Fourier basis \(U_{\tilde{L}}\).

- Rotating with \(U_{\tilde{L}}\) and using \(\tilde{Z} = [\tilde{Z}_1 : \cdots : \tilde{Z}_n] = ZU_{\tilde{L}}\), the observations are transformed again into independent vectors \(\tilde{X}_1, \ldots, \tilde{X}_n\) given by

\[
\tilde{X} = [\tilde{X}_1 : \cdots : \tilde{X}_n] = X_1 U_{\tilde{L}} = [(I + \eta_1 A_1)\tilde{Z}_1 : \cdots : (I + \eta_n A_1)\tilde{Z}_n],
\]

where \(\eta_t = e^{i \nu_t}\) and \(\nu_t = 2\pi t/n\)
Assumptions for Linear Processes

- Results for MA(q) processes can be proved as above, so focus on the MA(∞) process \((X_t: t \in \mathbb{Z})\) given by \(X_t = \sum_{t'=-\infty}^{\infty} A_{t'} Z_{t-t'}\), let \(A = [A_0 : A_1 : \cdots]\). Assume that

 (A3) The matrices \((A_t: t \in \mathbb{N}_0)\) are simultaneously diagonalizable random Hermitian matrices, independent of \((Z_t: t \in \mathbb{Z})\) satisfying \(\|A_t\| \leq \bar{\lambda}_A\) for all \(t \in \mathbb{N}_0\) and large \(p\) with

\[
\sum_{t=0}^{\infty} \bar{\lambda}_A \leq \bar{\lambda}_A < \infty \quad \text{and} \quad \sum_{t=0}^{\infty} t \bar{\lambda}_A \leq \bar{\lambda}'_A < \infty
\]

 (A4) There are continuous functions \(f_t: \mathbb{R}^m \to \mathbb{R}, t \in \mathbb{N}_0\), such that for every \(p\) there is a set of points \(\lambda_1, \ldots, \lambda_p \in \mathbb{R}^m\), not necessarily distinct, and a unitary \(p \times p\) matrix \(U\) such that

\[
f_0(\lambda) = 1 \quad \text{and} \quad U^* A_t U = \text{diag}(f_t(\lambda_1), \ldots, f_t(\lambda_p)), \quad \ell \in \mathbb{N}
\]

 (A5) Almost surely, \(F^A_p\), the ESD of \(\lambda_1, \ldots, \lambda_p\), converges weakly to a nonrandom probability distribution function \(F^A\)
Discussion of Assumptions

• Simultaneous diagonizability can be relaxed to assuming Toeplitz structure for A_ℓ with entries decaying away from the diagonal at an appropriate rate.

Let $(X_t : t \geq 2)Z_t$ be given by

$$(L)X_t = (L)Z_t,$$

where $(L) = I_L$ and $(\ell) = I + \ell_L$ such that $\ell_k \leq \bar{k}$ and $\ell_k \leq \bar{\ell} \bar{k} < 1$, and $(Z_t : t \geq 2) \sim$ IID(0, I) with finite fourth moments. Then

$X_t = A(L)Z_t$ with $A(L) = \sum_{\ell=0}^{\infty} A_\ell L_\ell = I(L)\ell(L)$

• Under simultaneous diagonizability, $U_1U^{\ast} = \ell$ and $U\ell U^{\ast} = \ell\ell$ with appropriate matrices $\ell = \text{diag}(\ell_1, \ldots, \ell_p)$ and $\ell\ell = \text{diag}(\ell_1, \ldots, \ell_p)$ such that $|\ell_j| \leq \bar{\ell}$ and $|\ell_j| \leq \bar{\ell} \bar{k} < 1$.

Each coordinate of the rotated process satisfies

$$1 + \ell_j^{L_1} = (1 + \ell_j^{L_2})^{1}X_{\ell_1} = 1^{X_{\ell_1}}.$$
Discussion of Assumptions

- **Simultaneous diagonalizability** can be relaxed to assuming Toeplitz structure for A_ℓ with entries decaying away from the diagonal at an appropriate rate.

- **ARMA(1,1) Example**: Let $(X_t: t \in \mathbb{Z})$ be given by

 $$\Phi(L)X_t = \Theta(L)Z_t, \quad t \in \mathbb{Z},$$

 where $\Phi(L) = I - \Phi_1 L$, $\Theta(L) = I + \Theta_1 L$ such that $\|\Phi_1\| \leq \bar{\phi} < 1$ and $\|\Theta_1\| \leq \bar{\theta} < \infty$, and $(Z_t: t \in \mathbb{Z}) \sim \text{IID}(0, I)$ with finite fourth moments. Then

 - $X_t = A(L)Z_t$ with $A(L) = \sum_{\ell=0}^{\infty} A_\ell L^\ell = \Phi^{-1}(L)\Theta(L)$

 - Under simultaneous diagonalizability, $U\Phi_1 U^* = \Lambda_\Phi$ and $U\Theta_1 U^* = \Lambda_\Theta$ with appropriate matrices $\Lambda_\Phi = \text{diag}(\phi_1, \ldots, \phi_p)$ and $\Lambda_\Theta = \text{diag}(\theta_1, \ldots, \theta_p)$ such that $|\phi_j| \leq \bar{\phi}$ and $|\theta_j| \leq \bar{\theta}$

 - Each coordinate of the rotated process satisfies

 $$\frac{1 + \theta_j L}{1 - \phi_j L} = (1 + \theta_j L) \sum_{\ell=0}^{\infty} (\phi_j L)^\ell = 1 + (\theta_j + \phi_j) \sum_{\ell=1}^{\infty} \phi_j^{\ell-1} L^\ell,$$

 and it follows that $A_\ell = U \text{diag}(f_\ell(\lambda_1), \ldots, f_\ell(\lambda_p)) U^*$ with $\lambda_j = (\phi_j, \theta_j)' \in \mathbb{R}^2$, $f_0(\lambda_j) = 1$ and $f_\ell(\lambda_j) = (\theta_j + \phi_j) \phi_j^{\ell-1}$ for $\ell \in \mathbb{N}$.
Result for Linear Processes

- Define $\psi(\lambda, \nu) = \sum_{\ell=0}^{\infty} e^{i\ell \nu} f_\ell(\lambda)$ and $h(\lambda, \nu) = |\psi(\lambda, \nu)|^2$

Theorem 2: If the linear process $(X_t : t \in \mathbb{Z})$ satisfies (A3)–(A5), then, almost surely, \hat{F} converges weakly to a probability distribution F with Stieltjes transform $s(z)$ determined by the equation

$$s(z) = \int \left[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^{A}(\lambda), \quad (6)$$

where $K(z, \nu)$ is the unique solution to the nonlinear equation

$$K(z, \nu) = \int \left[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{h(\lambda, \nu')}{{1 + cK(z, \nu')}} d\nu' - z \right]^{-1} h(\lambda, \nu) dF^{A}(\lambda) \quad (7)$$

for $\nu \in [0, 2\pi]$, with $K(z, \nu)$ satisfying the requirement that, for any $\nu \in [0, 2\pi]$, it is the Stieltjes transform of a measure on \mathbb{R} with total mass $\int h(\lambda, \nu) dF^{A}(\lambda)$.

- Extensions to symmetrized autocovariance matrices exist
Examples

- If $A_t = 0$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko–Pastur law.
Examples

• If $A_t = 0$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko–Pastur law.

• If $A_t = \alpha_t I_p$, $t \in \mathbb{N}$, with $\sum_{t=1}^{\infty} t|\alpha_t| < \infty$, then

$$h(\lambda, \nu) \equiv h(\nu) = |\sum_{t=0}^{\infty} e^{i\nu t} \alpha_t|^2$$

is independent of λ and (6) reduces to

$$s(z) = \left[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{h(\nu) \, d\nu}{1 + cs(z)h(\nu)} - z \right]^{-1}$$

that is, the linear process case with independent, identically distributed rows.

\section*{Examples}

- If $A_t = 0$, $t \in \mathbb{N}$, then $h(\lambda, \nu) \equiv 1$ and (6) reduces to the original Marčenko–Pastur law.

- If $A_t = \alpha_t I_p$, $t \in \mathbb{N}$, with $\sum_{t=1}^{\infty} t|\alpha_t| < \infty$, then

 \[h(\lambda, \nu) \equiv h(\nu) = |\sum_{t=0}^{\infty} e^{it\nu} \alpha_t|^2 \]

 is independent of λ and (6) reduces to

 \[s(z) = \left[\frac{1}{2\pi} \int_{0}^{2\pi} \frac{h(\nu)d\nu}{1 + cs(z)h(\nu)} - z \right]^{-1} \]

 that is, the linear process case with independent, identically distributed rows

- Causal ARMA processes included by determining the causal matrix coefficients
Final Comments on the Proof

• Arguments used so far do not work because

• if one constructs the data matrix X not from a linear process $X_t = \sum_{t'=0}^{\infty} A_{t'} Z_{t-t'}$, then every column of X is different from the transformed matrix $X_\infty = \sum_{t'=0}^{\infty} A_t Z L^t$ and not only the first column as in the MA(1) case

• for the MA(1) case, one can write the Stieltjes transform $s_p(z)$ as a function of $2p(n + 1)$ variables Z_{tj}^R and Z_{tj}^I, but for linear processes, even for finite p, $s_p(z)$ is a function of infinitely many Z_{tj}^R and Z_{tj}^I
Final Comments on the Proof

- Arguments used so far do not work because
 - if one constructs the data matrix X not from a linear process $X_t = \sum_{t'=0}^{\infty} A_{t'} Z_{t-t'}$, then every column of X is different from the transformed matrix $X_\infty = \sum_{t'=0}^{\infty} A_t Z L_t$ and not only the first column as in the MA(1) case
 - for the MA(1) case, one can write the Stieltjes transform $s_p(z)$ as a function of $2p(n + 1)$ variables Z_{tj}^R and Z_{tj}^I, but for linear processes, even for finite p, $s_p(z)$ is a function of infinitely many Z_{tj}^R and Z_{tj}^I

- Use approximation through finite-order MA processes $X_t^{q(p)} = \sum_{t'=0}^{q(p)} A_{t'} Z_{t-t'}$ whose order $q(p)$ is growing with the sample size
 - Obviously $q(p) \to \infty$ is necessary
 - But $q(p)$ cannot grow too fast (same difficulties in transitioning from the Gaussian to the non-Gaussian case as for the linear process itself) or too slow (showing that the limiting ESDs of the linear process and its truncated version are the same becomes an issue)
 - Choose $q(p) = \lfloor p^{1/4} \rfloor$, with $[\cdot]$ denoting the ceiling function
C. Estimation of Quadratic Forms for Time Series
Goal is to make framework more applicable

- *Estimation of quadratic forms involving sample covariance matrices*
- *Lead example: Markowitz portfolio and mean-variance frontier*
- *Based on a thresholding and model selection procedure for eigenvalues*
Markowitz Portfolio Problem

- Framework for assembling a portfolio of risky assets \(v_1, \ldots, v_p \)
 - Assets have expected returns \(\mu_1, \ldots \mu_p \) and covariance matrix \(\Sigma \)
 - For expected portfolio return \(\mu_P \) choose allocation with smallest risk

- Mathematical formulation as quadratic program
 - Solve
 \[
 \min \quad w^2 R_p
 \]
 \[
 \text{subject to: } w_0 \mu = \mu_P \quad \text{and} \quad w_0 1 = 1, \quad \text{where } \mu = (\mu_1, \ldots, \mu_p)
 \]

- If \(\mu \) is the solution, then \(w_0 \Sigma w \) viewed as function of \(\mu_P \) is called efficient frontier

- If \(\Sigma \) is invertible, then there is an explicit form of \(w_0 \)

- Common practice: Estimate the expected return vector \(\mu \) and use \(S \) in place of \(\Sigma \)
 - This can lead to risk underestimation, especially when \(n \) and \(p \) are comparable

- Results available in the high-dimensional setting are for independent setting
Markowitz Portfolio Problem

- **Framework for assembling a portfolio of risky assets** v_1, \ldots, v_p
 - Assets have expected returns μ_1, \ldots, μ_p and covariance matrix Σ
 - For expected portfolio return μ_P choose allocation with smallest risk

- **Mathematical formulation as quadratic program**
 - Solve
 $$\min_{w \in \mathbb{R}^p} \frac{1}{2} w' \Sigma w$$
 with linear constraints $w' \mu = \mu_P$ and $w' 1 = 1$, where $\mu = (\mu_1, \ldots, \mu_p)'$ and $1 = (1, \ldots, 1)'$
 - If w_{opt} is the solution, then $w_{opt}' \Sigma w_{opt}$ viewed as function of μ_P is called **efficient frontier**
 - If Σ is invertible, then there is an explicit form of w_{opt}
Markowitz Portfolio Problem

- Framework for assembling a portfolio of risky assets v_1, \ldots, v_p
 - Assets have expected returns μ_1, \ldots, μ_p and covariance matrix Σ
 - For expected portfolio return μ_P choose allocation with smallest risk

- Mathematical formulation as quadratic program
 - Solve
 \[
 \min_{w \in \mathbb{R}^p} \frac{1}{2} w' \Sigma w
 \]
 with linear constraints $w' \mu = \mu_P$ and $w' 1 = 1$, where $\mu = (\mu_1, \ldots, \mu_p)'$ and $1 = (1, \ldots, 1)'$
 - If w_{opt} is the solution, then $w'_{opt} \Sigma w_{opt}$ viewed as function of μ_P is called efficient frontier
 - If Σ is invertible, then there is an explicit form of w_{opt}

- Common practice: Estimate the expected return vector μ and use S in place of Σ
 - This can lead to risk underestimation, especially when n and p are comparable
 - Results available in the high-dimensional setting are for independent setting
To highlight the differences between the optimal weights obtained from the population and sample quadratic programs, let

$$w = w_{opt,p} \quad \text{and} \quad \hat{w} = w_{opt,s}$$

the population and sample weights, respectively.
Risk Underestimation

- To highlight the differences between the optimal weights obtained from the population and sample quadratic programs, let

\[w = w_{opt,p} \quad \text{and} \quad \hat{w} = w_{opt,s} \]

the population and sample weights, respectively.

- Then, assuming \(p \leq n \) for simplicity,

\[
\hat{w}' S^{-1} \hat{w} \approx N_p \left(w' \Sigma^{-1} w - D_p \right) < w' \Sigma^{-1} w,
\]

where

\[
N_p = 1 - \frac{p - 2}{n - 1},
\]

\[
D_d = \frac{p}{n} \left(u' \nu^{-1} e_2 \right)^2 \left(1 + \frac{p}{n} e_2' \nu^{-1} e_2 \right)^{-1}
\]
Algorithm: Idea

- The eigendecomposition of Σ gives

\[
Q = V'\Sigma^{-1}V = V'U'\Lambda^{-1}UV,
\]
Algorithm: Idea

- The eigendecomposition of Σ gives

$$Q = V'\Sigma^{-1}V = V'U'\Lambda^{-1}UV,$$

- Perform the following steps:

 Step 1: To estimate Λ, utilize that LSD is given by

 $$s(z) = \int \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{h(\lambda, \nu)}{1 + cK(z, \nu)} d\nu - z \right]^{-1} dF^A(\lambda),$$

 and mimic limiting behavior on sample version, using $\hat{s}(z)$ in place of $s(z)$

 Step 2: Invert (8) to find \hat{F}^A: Choose best-fitting spectrum from set of candidate spectra

 Step 3: Estimate contribution of columns of UV using projection matrices
Performance: MA(2) Process

- $p = 1000$, $n = 3000$. “Model Selection” is proposed algorithm; “Naive Estimate” uses S in place of Σ; “IndShrink” is shrinkage estimation assuming independence.
Performance: AR(1) Process

- \(p = 500, n = 2000 \). Labeling is as before.
- Model misspecification: An AR(1) time series is approximated by an MA(2) time series.
D. Wrap-Up
Wrap-Up of Talk

• *Learnt about*

 • the bulk eigenvalues of sample (auto)covariances from linear processes

 • the difficulties in finding appropriate models for high-dimensional time series

 • Some potential applications

 • One actual application: Mean-variance frontier estimation

• *Learnt also that much more work is needed*