Energies and residues of manifolds and configuration space of polygons
Plan of Lectures and Tutorials

Jun O’Hara (Chiba University)

June 2019
Where is Chiba?

We are here

Chiba
What does Chiba mean?

Chiba = 千葉 = thousand leaves = mille feuilles
Purpose and outline of Lectures. The space

- \(X \): a submanifold of \(\mathbb{R}^N \); either
 - \(M^m \): a closed submanifold (\(\partial M = \emptyset \) and \(m < N \))
 - \(\Omega^N \): a compact body (\(= \) the closure of the interior of \(\Omega \))

- We do not consider \(W^m \subset \mathbb{R}^N \) with \(\partial W \neq \emptyset \) and \(m < N \).
Purpose and outline of Lectures. The space

- X: a submanifold of \mathbb{R}^N; either
 - M^m: a closed submanifold ($\partial M = \emptyset$ and $m < N$)
 - Ω^N: a compact body (= the closure of the interior of Ω)

- We do not consider $W^m \subset \mathbb{R}^N$ with $\partial W \neq \emptyset$ and $m < N$.

\[\begin{align*}
\text{knot} & \quad \Sigma_2
\end{align*}\]
Purpose and outline of Lectures. The space \mathbb{R}^N:

- X: a submanifold of \mathbb{R}^N; either
 - M^m: a closed submanifold ($\partial M = \emptyset$ and $m < N$)
 - Ω^N: a compact body (= the closure of the interior of Ω)

- We do not consider $W^m \subset \mathbb{R}^N$ with $\partial W \neq \emptyset$ and $m < N$.

![Diagrams](knot.png, \Sigma_2.png, planar domain.png, ball.png)
Purpose and outline of Lectures. The space

- X: a submanifold of \mathbb{R}^N; either
 - M^m: a closed submanifold ($\partial M = \emptyset$ and $m < N$)
 - Ω^N: a compact body ($= \text{the closure of the interior of } \Omega$)

- We do not consider $W^m \subset \mathbb{R}^N$ with $\partial W \neq \emptyset$ and $m < N$.

![Diagrams](attachment:image.png)
The quantities

- We derive two quantities for X from $\int\int_{X \times X} |x - y|^s \, dx \, dy$

- **Energies**: geometric complexity with information on global shape, e.g., knot energies (cf. KnotPlot by Rob Scharein), generalized Riesz energies

- **Residues**: \int (local quantities), e.g., volume (of $\partial \Omega$), total squared curvature, Willmore functional, (Euler characteristics when $\dim X$ is small)
The quantities

- We derive two quantities for X from $\int \int_{X \times X} |x - y|^s \, dx \, dy$

- **Energies**: geometric complexity with information on global shape, e.g., knot energies (cf. KnotPlot by Rob Scharein), generalized Riesz energies

- **Residues**: \int (local quantities), e.g., volume (of $\partial \Omega$), total squared curvature, Willmore functional, (Euler characteristics when dim X is small)
The quantities

- We derive two quantities for X from $\iint_{X \times X} |x - y|^s \, dx \, dy$

- **Energies**: geometric complexity with information on global shape
e.g., knot energies (cf. KnotPlot by Rob Scharein),
generalized Riesz energies

- **Residues**: \int (local quantities),
e.g., volume (of $\partial \Omega$), total squared curvature, Willmore functional,
(Euler characteristics when $\dim X$ is small)
Machinery

- Metric (distance function on $X \times X$)

- Start with $I(X, s) := \iint_{X \times X} |x - y|^s \, dx \, dy$

- $I(X, s)$ blows up when s is small ($s \leq -\dim X$)

- Two kinds of regularization from the theory of generalized functions:
 - Hadamard regularization (HR) and
 - regularization via analytic continuation (AC)
• Metric (distance function on $X \times X$)

• Start with $I(X, s) := \int\int_{X \times X} |x - y|^s \, dx \, dy$

• $I(X, s)$ blows up when s is small ($s \leq -\dim X$)

• Two kinds of regularization from the theory of generalized functions;
 Hadamard regularization (HR) and
 regularization via analytic continuation (AC)
- Metric (distance function on $X \times X$)
- Start with $I(X, s) := \int \int_{X \times X} |x - y|^s \, dx \, dy$
- $I(X, s)$ blows up when s is small ($s \leq -\dim X$)
- Two kinds of regularization
 - Hadamard regularization (HR) and
 - Regularization via analytic continuation (AC)
When s is small ($s \leq -\dim X$), $\int\int_{X \times X} |x - y|^s \, dx \, dy$ blows up on the diagonal set $\Delta = \{(x, x) : x \in X\}$.

Consider $\int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy$ ($\varepsilon > 0$), expand it in a series in $\frac{1}{\varepsilon}$ (a Laurent series of ε)

The constant term is called Hadamard’s finite part, denoted by $\text{Pf.} \int\int_{X \times X} |x - y|^s \, dx \, dy$
Hadamard regularization

- When s is small ($s \leq -\dim X$), $\int\int_{X \times X} |x - y|^s \, dx \, dy$ blows up on the diagonal set $\Delta = \{(x, x) : x \in X\}$.

- Consider $\int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy$ ($\varepsilon > 0$), expand it in a series in $\frac{1}{\varepsilon}$ (a Laurent series of ε).

- The constant term is called Hadamard's finite part, denoted by $\text{Pf.} \int\int_{X \times X} |x - y|^s \, dx \, dy$.
Hadamard regularization

- When s is small ($s \leq -\dim X$), $\int\int_{X \times X} |x - y|^s \, dx \, dy$ blows up on the diagonal set $\Delta = \{(x, x) : x \in X\}$.

- Consider $\int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy$ ($\varepsilon > 0$), expand it in a series in $\frac{1}{\varepsilon}$ (a Laurent series of ε).

- The constant term is called Hadamard’s finite part, denoted by $\text{Pf.} \int\int_{X \times X} |x - y|^s \, dx \, dy$.
Consider the power s in $\int\int_{X \times X} |x - y|^s \, dx \, dy$ as a complex variable (denoted by z in what follows)

\[\mathbb{C} \ni z \mapsto \int\int_{X \times X} |x - y|^z \, dx \, dy \in \mathbb{C} \] as a complex function

It is holomorphic when $\Re z$ is big ($\Re z > -\dim X$)

Expand the domain by analytic continuation to obtain a meromorphic function with simple poles, $B_X(z)$, Brylinski's beta function of X
Consider the power \(s \) in \(\int\int_{X \times X} |x - y|^s \, dx \, dy \) as a complex variable (denoted by \(z \) in what follows)

\[\mathbb{C} \ni z \mapsto \int\int_{X \times X} |x - y|^z \, dx \, dy \in \mathbb{C} \]

It is holomorphic when \(\Re z \) is big (\(\Re z > -\dim X \))

Expand the domain by analytic continuation to obtain a meromorphic function with simple poles, \(B_X(z) \), Brylinski’s beta function of \(X \)
Consider the power s in $\int\int_{X \times X} |x - y|^s \, dx \, dy$ as a complex variable (denoted by z in what follows).

$\mathbb{C} \ni z \mapsto \int\int_{X \times X} |x - y|^z \, dx \, dy \in \mathbb{C}$ as a complex function.

It is holomorphic when $\Re z$ is big ($\Re z > -\dim X$).

Expand the domain by analytic continuation to obtain a meromorphic function with simple poles, $B_X(z)$, Brylinski’s beta function of X.
Energies and residues by two regularizations

- Hadamard regularization.

Laurent series \(p(s; \varepsilon) = \int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dxdy \)

- \(s \)-Energy = Pf. \(\int\int_{M \times M} |x - y|^s \, dxdy \), i.e. constant term of \(p(s; \varepsilon) \)

- Residues "=" coefficients of terms of \(p(s; \varepsilon) \) with negative powers

- Analytic continuation. \(B_X(z) = \int\int_{X \times X} |x - y|^z \, dxdy \)

- \(s \)-Energy = \(\begin{cases} \lim_{z \to s} \left(B_X(z) - \frac{\text{Res}(B_X, s)}{z - s} \right) & B_X \text{ has a pole at } s \\ B_X(s) & \text{otherwise} \end{cases} \)

- Residues are residues of \(B_X(z) \)
Energies and residues by two regularizations

- Hadamard regularization.

Laurent series \(p(s; \varepsilon) = \int \int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy \)

- \(s \)-Energy = Pf. \(\int \int_{M \times M} |x - y|^s \, dx \, dy \), i.e. constant term of \(p(s; \varepsilon) \)

- Residues “=” coefficients of terms of \(p(s; \varepsilon) \) with negative powers

- Analytic continuation. \(B_X(z) = \int \int_{X \times X} |x - y|^z \, dx \, dy \)

- \(s \)-Energy = \(\begin{cases} \lim_{z \to s} \left(B_X(z) - \frac{\text{Res}(B_X, s)}{z - s} \right) & \text{if } B_X \text{ has a pole at } s \\ B_X(s) & \text{otherwise} \end{cases} \)

- Residues are residues of \(B_X(z) \)
Energies and residues by two regularizations

- Hadamard regularization.

Laurent series \(p(s; \varepsilon) = \int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dxdy \)

- \(s \)-Energy = Pf. \(\int\int_{M \times M} |x - y|^s \, dxdy \), i.e. constant term of \(p(s; \varepsilon) \)

- Residues “=” coefficients of terms of \(p(s; \varepsilon) \) with negative powers

- Analytic continuation. \(B_X(z) = \int\int_{X \times X} |x - y|^z \, dxdy \)

- \(s \)-Energy = \(\begin{cases} \lim_{z \to s} \left(B_X(z) - \frac{\text{Res} (B_X, s)}{z - s} \right) & \text{if } B_X \text{ has a pole at } s \\ B_X(s) & \text{otherwise} \end{cases} \)

- Residues are residues of \(B_X(z) \)
Energies and residues by two regularizations

- Hadamard regularization.

Laurent series \(p(s; \varepsilon) = \iint_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy \)

- \(s \)-Energy = Pf. \(\iint_{M \times M} |x - y|^s \, dx \, dy \), i.e. constant term of \(p(s; \varepsilon) \)

- Residues “=” coefficients of terms of \(p(s; \varepsilon) \) with negative powers

- Analytic continuation. \(B_X(z) = \iint_{X \times X} |x - y|^z \, dx \, dy \)

- \(s \)-Energy = \(\begin{cases} \lim_{z \to s} \left(B_X(z) - \frac{\text{Res}(B_X, s)}{z - s} \right) & B_X \text{ has a pole at } s \\ B_X(s) & \text{otherwise} \end{cases} \)

- Residues are residues of \(B_X(z) \)
Energies and residues by two regularizations

- Hadamard regularization.

 Laurent series \(p(s; \varepsilon) = \int \int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy \)

- \(s \)-Energy = Pf. \(\int \int_{M \times M} |x - y|^s \, dx \, dy \), i.e. constant term of \(p(s; \varepsilon) \)

- Residues “=” coefficients of terms of \(p(s; \varepsilon) \) with negative powers

- Analytic continuation. \(B_X(z) = \int \int_{X \times X} |x - y|^z \, dx \, dy \)

- \(s \)-Energy = \[
\begin{cases}
\lim_{z \to s} \left(B_X(z) - \frac{\text{Res} (B_X, s)}{z - s} \right) & \text{if } B_X \text{ has a pole at } s \\
B_X(s) & \text{otherwise}
\end{cases}
\]

- Residues are residues of \(B_X(z) \)
Energies and residues by two regularizations

- Hadamard regularization.

Laurent series $p(s; \varepsilon) = \int\int_{X \times X \setminus N_\varepsilon(\Delta)} |x - y|^s \, dx \, dy$

- s-Energy = Pf. $\int\int_{M \times M} |x - y|^s \, dx \, dy$, i.e. constant term of $p(s; \varepsilon)$

- Residues “=” coefficients of terms of $p(s; \varepsilon)$ with negative powers

- Analytic continuation. $B_X(z) = \int\int_{X \times X} |x - y|^z \, dx \, dy$

- s-Energy = \[
\begin{cases}
\lim_{z \to s} \left(B_X(z) - \frac{\text{Res} (B_X, s)}{z - s} \right) & \text{if } B_X \text{ has a pole at } s \\
B_X(s) & \text{otherwise}
\end{cases}
\]

- Residues are residues of $B_X(z)$
Let us consider some geometric objects in \mathbb{R}^n (usually $n = 2, 3$) such as polygons or (mechanical) linkages (e.g. robot arms). The configuration space (moduli space) is a space of the “shapes”

$$M := \{ \text{geometric objects} \}/G_+,$$

where G_+ is the group of the orientation preserving isometries of \mathbb{R}^n, $G_+ = SO(n) \rtimes \mathbb{R}^n$.

We study the case when $\dim M$ is finite, especially $\dim M = 1, 2$.
Let us consider some geometric objects in \mathbb{R}^n (usually $n = 2, 3$) such as polygons or (mechanical) linkages (e.g. robot arms). The configuration space (moduli space) is a space of the “shapes”

$$\mathcal{M} := \{ \text{geometric objects} \}/G_+,$$

where G_+ is the group of the orientation preserving isometries of \mathbb{R}^n, $G_+ = SO(n) \ltimes \mathbb{R}^n$.

We study the case when $\dim \mathcal{M}$ is finite, especially $\dim \mathcal{M} = 1, 2$.
Example 1: Configuration space of planar pentagons

- E.g.: Config. sp. of pentagons $\subset \mathbb{R}^2$ with fixed edge lengths.
- $(e_1, \ldots, e_5) \in (\mathbb{R}_+)^5$: given

$$\mathcal{P}(e_1, \ldots, e_5) = \{(P_1, \ldots, P_5) \in (\mathbb{R}^2)^5 : |P_iP_{i-1}| = e_i\}/G_+,$$

- $/G_+$ corresponds to fixing an edge, say P_1P_2
- Expected dimension of \mathcal{P}: 3 more vertices, 4 more relations (← edge lengths), hence $\dim \mathcal{P} = 3 \times 2 - 4 = 2$
- It is known that when \mathcal{P} is a manifold, i.e., without singularities

$$\mathcal{P} \cong S^2, T^2, \Sigma_2, \Sigma_3, \Sigma_4.$$

The genus can be computed from (e_1, \ldots, e_5)
Example 2: Config. sp. of planar “spidery linkages”

Consider mechanical linkages with arms and joints. We assume some of the joints/end points of arms are fixed.

B_i are fixed, located equally on a circle with radius R

It can move in the plane

Self-intersection is allowed

Assume $|B_iN_i| = |N_iC| = 1$ ($\forall i$)

$$M \cong \begin{cases} \Sigma_{17} & \text{if } 1 < R < 2 \\ \Sigma_{209} & \text{if } 0 < R < 1 \end{cases}$$
Example 2: Config. sp. of planar “spidery linkages”

Consider mechanical linkages with arms and joints. We assume some of the joints/end points of arms are fixed. \(B_i \) are fixed, located equally on a circle with radius \(R \). It can move in the plane. Self-intersection is allowed. Assume \(|B_iN_i| = |N_iC| = 1 \) \((\forall i)\)

\[
\mathcal{M} \cong \begin{cases}
\Sigma_{17} & \text{if } 1 < R < 2 \\
\Sigma_{209} & \text{if } 0 < R < 1
\end{cases}
\]
Study 3D-linkages such that the configuration space is 2 dimensional.
The dimension of the config. sp. of spatial n-gons $= 2 \iff n = 4$

Example: $\{3D$-quadrilaterals$\}/G_+ \cong S^2$ or torus or pinched torus

An equilateral and equiangular n-gon (α-regular stick knot) is a mathematical model of cycloalkane C_nH_{2n}.
The dimension of the config. sp. $= 1 \ (n = 6, 7)$ and $= 2 \ (n = 8)$

Dancing hexagons
Study 3D-linkages such that the configuration space is 2 dimensional.

The dimension of the config. sp. of spatial n-gons $= 2 \iff n = 4$

Example: $\{3D$-quadrilaterals$\}/G_+ \cong S^2$ or torus or pinched torus

An equilateral and equiangular n-gon (α-regular stick knot) is a mathematical model of cycloalkane C_nH_{2n}.

The dimension of the config. sp. $= 1$ ($n = 6, 7$) and $= 2$ ($n = 8$)

Dancing hexagons
Equilateral $\arccos(-1/3)$-octagons

Yoshiki Kato did numerical experiments on the case when the bond angle $= \arccos(-1/3)$, the carbon bond angle.

Conjecture (Kato 2019, Master Thesis in Japanese)

$\mathcal{M} \approx$ (homeo. to) a union of two spheres with two points in common (twice pinched torus)
Let $\mathcal{M} = \mathcal{M}(e_1, \ldots, e_8; \theta_1, \ldots, \theta_8)$ be the config. sp. of octagons such that $|P_i - P_{i-1}| = e_i$ and $\angle P_j = \theta_j$.

Problem

1. What is the topological type of $\mathcal{M}(1, \ldots, 1; \theta, \ldots, \theta)$?
2. When is $\mathcal{M}(e_1, \ldots, e_8; \theta_1, \ldots, \theta_8)$ a manifold, i.e., without singularities?
3. What are the possible genera of $\mathcal{M}(e_1, \ldots, e_8; \theta_1, \ldots, \theta_8)$?

Problem

Can Brylinski’s beta function $B_K(z)$ distinguish points in \mathcal{M}?
Cf. Can you hear the shape of a drum? (Kac)
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\leadsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$.

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dxdy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_\circ(z) = B\left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2}\right)$.
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\rightsquigarrow a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$

Theorem (Brylinski ’99)

\[
B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|^2}
\]

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_\circ(z) = B \left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2} \right)$
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\leadsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_\circ(z) = B \left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2} \right)$
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iiint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\leadsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iiint_{K \times K} \frac{dx \, dy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$
 - For the unit circle, $B_\circ(z) = B \left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2} \right)$
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\mapsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$.

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_{\circ}(z) = B \left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2} \right)$.
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dx \, dy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\mapsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_\circ(z) = B \left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2} \right)$
Brylinski’s beta function of a knot K

- $\mathbb{C} \ni z \mapsto \iint_{K \times K} |x - y|^z \, dxdy \in \mathbb{C}$ is holomorphic on $\Re z > -1$.

Expand the domain to \mathbb{C} by analytic continuation.

\leadsto a meromorphic function with simple poles at $z = -1, -3, -5, \ldots$.

- It is called Brylinski’s beta function of a knot K, denoted by $B_K(z)$.

Theorem (Brylinski ’99)

$$B_K(-2) = E(K) = \text{Pf.} \iint_{K \times K} \frac{dxdy}{|x - y|^2}$$

- The residues are geometric quantities of a knot K;
 - $\text{Res}(B_K, -1) = 2 \text{ Length}(K)$
 - $\text{Res}(B_K, -3) = \frac{1}{4} \int_K \kappa^2 \, dx$

- For the unit circle, $B_\circ(z) = B\left(\frac{z}{2} + \frac{1}{2}, \frac{1}{2}\right)$
Brylinski beta function for polygons

- $B_K(z)$ has poles at $z = -1, -3, -5, \ldots$ if K is smooth. (The domain depends on the regularity of K)

Theorem (Brylinski ’99)

If K is a polygonal knot with n vertices then $B_K(z)$ has simple poles at $z = -1, -2$

- $\text{Res}(B_K, -1) = 2 \text{Length}(K)$

- $\text{Res}(B_K, -2) = -2k + 2 \sum_{j=1}^{n} \frac{\pi - \theta_j}{\sin \theta_j},$

where θ_j is the angle between adjacent edges.
Brylinski beta function for polygons

- $B_K(z)$ has poles at $z = -1, -3, -5, \ldots$ if K is smooth.
 (The domain depends on the regularity of K)

Theorem (Brylinski ’99)

If K is a polygonal knot with n vertices then $B_K(z)$ has simple poles at $z = -1, -2$

- $\text{Res}(B_K, -1) = 2 \text{Length}(K)$
- $\text{Res}(B_K, -2) = -2k + 2 \sum_{j=1}^{n} \frac{\pi - \theta_j}{\sin \theta_j}$, where θ_j is the angle between adjacent edges.
Brylinski beta function for polygons

\[B_K(z) \] has poles at \(z = -1, -3, -5, \ldots \) if \(K \) is smooth.
(The domain depends on the regularity of \(K \))

Theorem (Brylinski '99)

If \(K \) is a polygonal knot with \(n \) vertices then \(B_K(z) \) has simple poles at \(z = -1, -2 \)

- \(\text{Res}(B_K, -1) = 2 \text{Length}(K) \)

- \(\text{Res}(B_K, -2) = -2k + 2 \sum_{j=1}^{n} \frac{\pi - \theta_j}{\sin \theta_j} \),

where \(\theta_j \) is the angle between adjacent edges.
Brylinski beta function for polygons

- $B_K(z)$ has poles at $z = -1, -3, -5, \ldots$ if K is smooth. (The domain depends on the regularity of K)

Theorem (Brylinski '99)

If K is a polygonal knot with n vertices then $B_K(z)$ has simple poles at $z = -1, -2$

1. $\text{Res}(B_K, -1) = 2 \text{Length}(K)$

2. $\text{Res}(B_K, -2) = -2k + 2 \sum_{j=1}^{n} \frac{\pi - \theta_j}{\sin \theta_j}$,

where θ_j is the angle between adjacent edges.
Motivation for the energy for knots

Problem (Fukuhara, Sakuma)

Find a functional (which we call an energy) on \{knots\} so that for every knot type we can get an “optimal configuration” as an energy minimizer.
Our strategy

{immersion}
Our strategy

\{non-embedding\}

\{immersion\}
Our strategy

- Each “cell” corresponds to a knot type.
Our strategy

\[
\begin{align*}
&\text{\textit{isotopy class } } [K] \\
&\text{\textit{immersion}} \\
&\text{\textit{non-embedding}}
\end{align*}
\]
Our strategy

- Deform it along the gradient flow of the "energy" e.

![Diagram showing isotopy class $[K]$ and non-embedding, with an arrow pointing to an immersion.]
Our strategy

\[e([K]) \quad \text{e-minimizer} \quad K_0 \]

\[e(K_0) = \inf_{K' \in [K]} e(K) =: e[K] \]

\{non-embedding\}

isotopy class \([K]\)

\{immersion\}
Our strategy

- Crossing changes during the deformation process should be avoided!

\[e([K]) \]

\[e - \text{minimizer } K_0 \]

\{non-embedding\}

\{immersion\}

\textbf{isotopy class } [K]
We require that our functional $\to +\infty$ as K degenerates to have double points.
Definition of an energy of knots

Definition
A functional $e : \{\text{knots}\} \rightarrow \mathbb{R}$ is called **self-repulsive** if it blows up as a knot degenerates to have double points.

![Diagram of knot degeneration]

Definition
A functional $e : \{\text{knots}\} \rightarrow \mathbb{R}$ is called an **energy** if it is

(i) self-repulsive,
(ii) bounded below,
(iii) continuous in some sense, say w.r.t. C^2-top.
Definition

A functional \(e : \{\text{knots}\} \to \mathbb{R} \) is called **self-repulsive** if it blows up as a knot degenerates to have double points.

![Diagram showing knot degeneration](image)

Definition

A functional \(e : \{\text{knots}\} \to \mathbb{R} \) is called an **energy** if it is

(i) self-repulsive,
(ii) bounded below,
(iii) continuous in some sense, say w.r.t. \(C^2 \)-top.
How to get an energy for knots

Candidate: an electrostatic energy of a charged knot

\[|\text{Coulomb's force}| \propto \frac{1}{r^2}, \text{ potential energy } = \int \int_{K \times K} \frac{dx \, dy}{|x - y|} \]

Apply regularization (HR or AC)
How to get an energy for knots

Candidate: an electrostatic energy of a charged knot

\[|\text{Coulomb’s force}| \propto \frac{1}{r^2}, \text{potential energy} = \int \int_{K \times K} \frac{dx \ dy}{|x - y|} \]

Apply regularization (HR or AC)
How to get an energy for knots

Candidate: an electrostatic energy of a charged knot

\[\text{Coulomb's force} \propto \frac{1}{r^2}, \text{ potential energy} = \int \int_{K \times K} \frac{dx\ dy}{|x - y|} = \infty \ (\forall K) \]

Apply regularization (HR or AC)
How to get an energy for knots

Candidate: an electrostatic energy of a charged knot

\[|\text{Coulomb's force}| \propto \frac{1}{r^2}, \text{ potential energy} = \int \int_{K \times K} \frac{dx \, dy}{|x - y|} = \infty \quad (\forall K) \]

Apply regularization (HR or AC)
Energy of knots

An electrostatic energy of a charged knot
\[\int \int_{K \times K} \frac{dx \, dy}{|x - y|} \]

Hadamard regularization Pf. \(\int \int_{K \times K} \frac{dx \, dy}{|x - y|} \) is not self-repulsive

Increase the power.
Self-repulsive if the power \(\geq 2 \).

Definition

\[E(K) := \text{Pf.} \int \int_{K \times K} \frac{dx \, dy}{|x - y|^2} \]
Energy of knots

An electrostatic energy of a charged knot

$$\int\int_{K \times K} \frac{dx \, dy}{|x - y|}$$

Hadamard regularization Pf. \(\int\int_{K \times K} \frac{dx \, dy}{|x - y|}\) is not self-repulsive

Increase the power.
Self-repulsive if the power \(\geq 2 \).

Definition

$$E(K) := \text{Pf.} \int\int_{K \times K} \frac{dx \, dy}{|x - y|^2}$$
Energy of knots

An electrostatic energy of a charged knot
\[\iint_{K \times K} \frac{dx \, dy}{|x - y|} \]

Hadamard regularization \(\text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|} \) is not self-repulsive

Increase the power.
Self-repulsive if the power \(\geq 2 \).

Definition

\[E(K) := \text{Pf.} \iint_{K \times K} \frac{dx \, dy}{|x - y|^2} \]
Möbius transformations \(\sim\) inversion in a circle

Inversion in the unit circle of \(\mathbb{C} \cup \{\infty\}\) is given by \(\mathbb{C} \ni z \mapsto \frac{1}{\bar{z}}\).

It is angle-preserving (conformal, i.e. “microscopically homothetic”), and it maps circles (including lines) to circles (including lines).
Möbius transformation

Inversion in a sphere Σ with center C and radius r

$$P \mapsto \begin{cases}
\infty & (P = C) \\
C & (P = \infty) \\
P' & (P \neq C, P), \ P' \in \text{half line } CP, \ |CP||CP'| = r^2
\end{cases}$$

A Möbius transformation of $\mathbb{R}^3 \cup \{\infty\}$ is a transformation of $\mathbb{R}^3 \cup \{\infty\}$ that can be obtained as a composition of inversions in spheres (including reflections in planes).
Möbius invariance of the energy of knots

Recall $E(K) = \text{Pf.} \int\int_{K \times K} \frac{dx \ dy}{|x - y|^2}$

Theorem (Freedman-He-Wang '94)

The energy E is invariant under Möbius transformations; $E(T(K)) = E(K)$ for any Möbius transformation T and for any knot K.

Corollary

For any prime knot type there is an E-minimizer.

prime = not composite

Theorem (Freedman-He-Wang '94)

The round circle gives the minimum value of E.
Energy minimizers by Rob Kusner and John M. Sullivan

Energies and residues of manifolds and configuration space of polygons

Plan of Lectures and Tutorials

June 2019 33 / 34
Related topics

- Regularity of E-minimizers. (Zheng-Xu He, Simon Blatt, Philipp Reiter, Armin Schikorra, Aya Ishizeki, Takeyuki Nagasawa, Alexandra Gilsbach, Heiko von der Mosel, and Nicole Vorderobermeier)

- Other energies of knots
- Energy for higher dimensional manifolds (surfaces etc)
- Functionals that measure geometric complexity of mfds.
- Numerical experiments
Related topics

- Regularity of E-minimizers. (Zheng-Xu He, Simon Blatt, Philipp Reiter, Armin Schikorra, Aya Ishizeki, Takeyuki Nagasawa, Alexandra Gilsbach, Heiko von der Mosel, and Nicole Vorderobermeier)
- Other energies of knots
 - Energy for higher dimensional manifolds (surfaces etc)
 - Functionals that measure geometric complexity of mfds.
 - Numerical experiments
Related topics

- Regularity of E-minimizers. (Zheng-Xu He, Simon Blatt, Philipp Reiter, Armin Schikorra, Aya Ishizeki, Takeyuki Nagasawa, Alexandra Gilsbach, Heiko von der Mosel, and Nicole Vorderobermeier)
- Other energies of knots
- Energy for higher dimensional manifolds (surfaces etc)
 - Functionals that measure geometric complexity of mfds.
 - Numerical experiments
Related topics

- Regularity of E-minimizers. (Zheng-Xu He, Simon Blatt, Philipp Reiter, Armin Schikorra, Aya Ishizeki, Takeyuki Nagasawa, Alexandra Gilsbach, Heiko von der Mosel, and Nicole Vorderobermeier)
- Other energies of knots
- Energy for higher dimensional manifolds (surfaces etc)
- Functionals that measure geometric complexity of mfds.
- Numerical experiments
Related topics

- Regularity of E-minimizers. (Zheng-Xu He, Simon Blatt, Philipp Reiter, Armin Schikorra, Aya Ishizeki, Takeyuki Nagasawa, Alexandra Gilsbach, Heiko von der Mosel, and Nicole Vorderobermeier)
- Other energies of knots
- Energy for higher dimensional manifolds (surfaces etc)
- Functionals that measure geometric complexity of mfds.
- Numerical experiments