Effective constructions in algebraic topology and topological data analysis

Celebrating Gunnar’s birthday in Minnesota

Anibal M. Medina-Mardones
Max Planck Institute for Mathematics in Bonn

August 2, 2022
A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.

Example
Cohomology vs homotopy.

A more subtle one
Effectiveness vs functoriality of their constructions.

Example
Cohomology via chain complex vs maps to Eilenberg-Maclane spaces.
A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.
Viewpoint

A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.
Viewpoint

A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.
Viewpoint

A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.

Example
Cohomology vs homotopy.
Viewpoint

A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.

Example
Cohomology vs homotopy.

A more subtle one
Effectiveness vs functoriality of their constructions.
A goal of algebraic topology
To construct invariants of spaces up to some notion of equivalence.

Today
CW complexes and homotopy equivalence.

A basic tension
Computability vs strength of invariants.

Example
Cohomology vs homotopy.

A more subtle one
Effectiveness vs functoriality of their constructions.

Example
Cohomology via chain complex vs maps to Eilenberg-Maclane spaces.
Effectively defined cohomology

Poincaré's idea
Break spaces into contractible combinatorial pieces:
Simplices, cubes, ...

Kan–Quillen's idea
Replace spaces by functors with a geometric realization:
Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:
$C(\Delta^n)$, $C(I^n)$, ...

Our goals (loosely stated)
Understand the diagonal map of these standard complexes better to:
1) Present effective/local computations of finer invariants in cohomology.
2) Describe explicit algebraic models of the homotopy type of spaces.
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

\[\text{Simplices, cubes, ...} \]

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

\[\text{Simplicial sets, cubical sets, ...} \]
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:

$C(\Delta^n), C(I^n), ...$
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:

\[C(\Delta^n), C(\Box^n), \ldots \]

Our goals (loosely stated)
Understand the diagonal map of these standard complexes better to:
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:

\[C(\Delta^n), C(I^n), \ldots \]

Our goals (loosely stated)
Understand the diagonal map of these standard complexes better to:

1) Present effective/local computations of finer invariants in cohomology.
Effectively defined cohomology

Poincaré’s idea
Break spaces into contractible combinatorial pieces:

Simplices, cubes, ...

Kan–Quillen’s idea
Replace spaces by functors with a geometric realization:

Simplicial sets, cubical sets, ...

Compute cohomology
Using a chain complex assembled from the standard chain complexes:

\[C(\Delta^n), \, C([n]), \, ... \]

Our goals (loosly stated)
Understand the diagonal map of these standard complexes better to:

1) Present effective/local computations of finer invariants in cohomology.
2) Describe explicit algebraic models of the homotopy type of spaces.
As graded vector spaces
\[H^\bullet \left(\mathbb{R}P^2; \mathbb{F}_2 \right) \cong H^\bullet \left(S^1 \vee S^2; \mathbb{F}_2 \right) \]
Similarly, as graded abelian groups
\[H^\bullet \left(C\mathbb{P}^2; \mathbb{Z} \right) \cong H^\bullet \left(S^2 \vee S^4; \mathbb{Z} \right) \]
These can be distinguished by the product structure in
\[H^\bullet \]
Defined by dualizing an explicit chain approximation to the diagonal
\[C(\Delta^n) \to C(\Delta^n) \otimes C(\Delta^n) \]
due to Alexander and Whitney.
Similarly, Cartan and Serre constructed
\[C(I^n) \to C(I^n) \otimes C(I^n) \]
Shortcomings of cohomology I

As graded vector spaces

\[H^\bullet(\mathbb{R}P^2; \mathbb{F}_2) \cong H^\bullet(S^1 \lor S^2; \mathbb{F}_2). \]
As graded vector spaces
\[H^\bullet(\mathbb{R}P^2; \mathbb{F}_2) \cong H^\bullet(S^1 \vee S^2; \mathbb{F}_2). \]

Similarly, as graded abelian groups
\[H^\bullet(\mathbb{C}P^2; \mathbb{Z}) \cong H^\bullet(S^2 \vee S^4; \mathbb{Z}). \]
Shortcomings of cohomology I

As graded vector spaces

$$H^\bullet(\mathbb{RP}^2; \mathbb{F}_2) \cong H^\bullet(S^1 \vee S^2; \mathbb{F}_2).$$

Similarly, as graded abelian groups

$$H^\bullet(\mathbb{CP}^2; \mathbb{Z}) \cong H^\bullet(S^2 \vee S^4; \mathbb{Z}).$$

These can be distinguished by the product structure in H^\bullet.
Shortcomings of cohomology I

As graded vector spaces

\[H^\bullet(\mathbb{R}P^2; \mathbb{F}_2) \cong H^\bullet(S^1 \vee S^2; \mathbb{F}_2). \]

Similarly, as graded abelian groups

\[H^\bullet(\mathbb{C}P^2; \mathbb{Z}) \cong H^\bullet(S^2 \vee S^4; \mathbb{Z}). \]

These can be distinguished by the product structure in \(H^\bullet \).

Defined by dualizing an explicit chain approximation to the diagonal

\[C(\Delta^n) \rightarrow C(\Delta^n) \otimes C(\Delta^n) \]

due to Alexander and Whitney.
Shortcomings of cohomology I

As graded vector spaces

\[H^\bullet(\mathbb{R}P^2; \mathbb{F}_2) \cong H^\bullet(S^1 \vee S^2; \mathbb{F}_2). \]

Similarly, as graded abelian groups

\[H^\bullet(\mathbb{C}P^2; \mathbb{Z}) \cong H^\bullet(S^2 \vee S^4; \mathbb{Z}). \]

These can be distinguished by the product structure in \(H^\bullet \).

Defined by dualizing an explicit chain approximation to the diagonal

\[C(\Delta^n) \to C(\Delta^n) \otimes C(\Delta^n) \]

due to Alexander and Whitney.

Similarly, Cartan and Serre constructed

\[C(\mathbb{I}^n) \to C(\mathbb{I}^n) \otimes C(\mathbb{I}^n). \]
Let \(\Sigma \) denote suspension, for example \(\Sigma(S^1) \) is a suspension. As graded rings,
\[
H^\bullet(\Sigma(CP^2)) \cong H^\bullet(\Sigma(S^2 \vee S^4))
\]
These can be distinguished by the action of the Steenrod algebra on \(H^\bullet \). From the spectral viewpoint this structure is present by definition. Question: Can it be described explicitly at the chain level?
Let Σ denotes suspension, for example $\Sigma(S^1)$ is
Shortcomings of cohomology II

Let Σ denotes suspension, for example $\Sigma(S^1)$ is

As graded rings

$$H^\bullet(\Sigma(\mathbb{C}P^2)) \cong H^\bullet(\Sigma(S^2 \vee S^4)).$$
Let Σ denotes suspension, for example $\Sigma(S^1)$ is drawn below. As graded rings

$$H^\bullet(\Sigma(\mathbb{C}P^2)) \cong H^\bullet(\Sigma(S^2 \vee S^4)).$$

These can be distinguished by the action of the Steenrod algebra on H^\bullet.

}\text{From the spectral viewpoint this structure is present by definition.}
Let Σ denotes suspension, for example $\Sigma(S^1)$ is

As graded rings

$$H^\bullet(\Sigma(\mathbb{CP}^2)) \cong H^\bullet(\Sigma(S^2 \vee S^4)).$$

These can be distinguished by the action of the Steenrod algebra on H^\bullet.

From the spectral viewpoint this structure is present by definition.
Shortcomings of cohomology II

Let Σ denotes suspension, for example $\Sigma(S^1)$ is

As graded rings

$$H^\bullet(\Sigma(\mathbb{C}P^2)) \cong H^\bullet(\Sigma(S^2 \vee S^4)).$$

These can be distinguished by the action of the Steenrod algebra on H^\bullet.

From the spectral viewpoint this structure is present by definition.

Question: Can it be described explicitly at the chain level?
Steenrod construction

Unlike the diagonal of spaces, chain approximations to it are not invariant under $x \otimes y \mapsto y \otimes x$. For example in $C(\Delta^n) \to C(\Delta^n) \otimes C(\Delta^n)$ we have

To correct homotopically the breaking of this symmetry, Steenrod introduced explicit maps $\Delta_i: C(\Delta^n) \to C(\Delta^n) \otimes 2$ satisfying

The cup-i coproducts. These define the Steenrod squares as $Sq^k: H^\bullet(X; F_2) \to H^\bullet(X; F_2)$ $[\alpha] \mapsto [\alpha \otimes \alpha] \Delta_i(-)$
Unlike the diagonal of spaces, chain approxs to it are not invariant under

\[x \otimes y \overset{T}{\mapsto} y \otimes x. \]

For example in \(C(\mathbb{1}) \to C(\mathbb{1}) \otimes C(\mathbb{1}) \) we have

\[\begin{array}{c}
\text{\hspace{1cm}}
\end{array} \]

\[\begin{array}{c}
\text{\hspace{1cm}}
\end{array} \]
Steenrod construction

Unlike the diagonal of spaces, chain approxs to it are not invariant under

\[x \otimes y \mapsto y \otimes x. \]

For example in \(C(\mathbb{I}) \to C(\mathbb{I}) \otimes C(\mathbb{I}) \) we have

\[\begin{array}{c}
\end{array} \]

To correct homotopically the breaking of this symmetry, Steenrod introduced explicit maps

\[\Delta_i : C(\Delta^n) \to C(\Delta^n) \otimes^2 \text{ satisfying } \partial \Delta_i = (1 \pm T) \Delta_{i-1}, \]

the cup-\(i \) coproducts.
Steenrod construction

Unlike the diagonal of spaces, chain approxs to it are not invariant under
\[x \otimes y \mapsto y \otimes x. \]

For example in \(C(I) \to C(I) \otimes C(I) \) we have

\[
\begin{array}{c}
\quad\
\end{array}
\]

To correct homotopically the breaking of this symmetry, Steenrod introduced explicit maps

\[\Delta_i : C(\Delta^n) \to C(\Delta^n) \otimes^2 \text{ satisfying } \partial \Delta_i = (1 \pm T) \Delta_{i-1}, \]

the cup-\(i\) coproducts.

These define the Steenrod squares as

\[\text{Sq}^k : H^\bullet(X; \mathbb{F}_2) \to H^\bullet(X; \mathbb{F}_2) \]

\[[\alpha] \mapsto [(\alpha \otimes \alpha) \Delta_i(-)] \]
A new description of Steenrod’s construction

Notation:
\[
\begin{align*}
\{v_0, \ldots, v_m\} &= \{\hat{v}_0 u, \ldots, v_m\} \\
\forall U = \{u_1 < \cdots < u_q\} \in P_{nq} &= \{U \subseteq \{0, \ldots, n\} : |U| = q\} \\
d_U &= d_{u_1} \cdots d_{u_q} \\
\epsilon &= \{u_i \in U | u_i + i \equiv \epsilon \mod 2\}
\end{align*}
\]

Definition (Med.):
For a basis element \(x \in C_m(\Delta_n, F_2)\)

\[
\Delta_i(x) = \sum_{U \in P_{n-m-i}} d_U 0(x) \otimes d_U 1(x)
\]

Example:
\[
\Delta_0[0, 1, 2] = \begin{pmatrix} d_{12} \otimes \text{id} + d_{2} \otimes d_{0} + \text{id} \otimes d_{01} \end{pmatrix} \begin{pmatrix} [0, 1, 2] \otimes 2 \end{pmatrix} = [0] \otimes [0, 1, 2] + [0] \otimes [1, 2] + [0] \otimes [2].
\]
A new description of Steenrod’s construction

Notation:

\[d_u [v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]
A new description of Steenrod’s construction

Notation:

\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v_u}, \ldots, v_m] \]
\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]
A new description of Steenrod’s construction

Notation:

\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]

\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]

\[\forall U = \{ u_1 < \cdots < u_q \} \in P^n_q \]
A new description of Steenrod’s construction

Notation:

\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]
\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]
\[\forall U = \{ u_1 < \cdots < u_q \} \in P^n_q \]
\[d_U = d_{u_1} \cdots d_{u_q} \]
A new description of Steenrod’s construction

Notation:

\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]

\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]

\[\forall U = \{u_1 < \cdots < u_q\} \in P^n_q \]

\[d_U = d_{u_1} \cdots d_{u_q} \]

\[U^\varepsilon = \{u_i \in U \mid u_i + i \equiv \varepsilon \mod 2\} \]
A new description of Steenrod’s construction

Notation:

\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]
\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]
\[\forall U = \{u_1 < \cdots < u_q\} \in P^n_q \]
\[d_U = d_{u_1} \cdots d_{u_q} \]
\[U^\varepsilon = \{u_i \in U \mid u_i + i \equiv \varepsilon \mod 2\} \]

Definition (Med.)

For a basis element \(x \in C_m(\Delta^n, \mathbb{F}_2) \)

\[\Delta_i(x) = \sum_{U \in P^n_{m-i}} d_{U^0}(x) \otimes d_{U^1}(x) \]
A new description of Steenrod’s construction

Notation:
\[d_u[v_0, \ldots, v_m] = [v_0, \ldots, \hat{v}_u, \ldots, v_m] \]
\[P^n_q = \{ U \subseteq \{0, \ldots, n\} : |U| = q \} \]
\[\forall U = \{ u_1 < \cdots < u_q \} \in P^n_q \]
\[d_U = d_{u_1} \cdots d_{u_q} \]
\[U^\varepsilon = \{ u_i \in U \mid u_i + i \equiv \varepsilon \mod 2 \} \]

Definition (Med.)
For a basis element \(x \in C_m(\Delta^n, \mathbb{F}_2) \)
\[\Delta_i(x) = \sum_{U \in P^n_{m-i}} d_{U^0}(x) \otimes d_{U^1}(x) \]

Example:
\[\Delta_0[0, 1, 2] = \left(d_{12} \otimes \text{id} + d_2 \otimes d_0 + \text{id} \otimes d_{01} \right)[0, 1, 2]^{\otimes 2} \]
\[= [0] \otimes [0, 1, 2] + [0, 1] \otimes [1, 2] + [0, 1, 2] \otimes [2]. \]
Fast computation of Steenrod squares
Fast computation of Steenrod squares

Comparing with SAGE: (algorithm based on EZ-AW contraction)
Fast computation of Steenrod squares

Comparing with SAGE: (algorithm based on EZ-AW contraction)

\[\text{Sq}^1 \text{ on } \Sigma^i \mathbb{R}P^2 \]
\((i^{th} \text{ suspension of the real projective plane}) \)

Number of simplices in the \(i \)-th suspension of \(\mathbb{R}P^2 \) for \(i = 0, 1, \ldots, 10 \)

Execution time in milliseconds
Steenrod barcodes

Given a filtered simplicial complex $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n$. Cohomology induces a persistent module, its barcode is a summary of how Betti numbers are consecutively shared.

$$H^\bullet(X_n; \mathbb{F}_2) \cdots H^\bullet(X_{n-1}; \mathbb{F}_2) H^\bullet(X_0; \mathbb{F}_2)$$
Steenrod barcodes

Given a filtered simplicial complex X

$$X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_n.$$
Steenrod barcodes

Given a filtered simplicial complex X

$$X_0 \to X_1 \to \cdots \to X_n.$$

Cohomology induces a persistent module, its barcode is a summary of how Betti numbers are consecutively shared.

$$H^\bullet(X_n; \mathbb{F}_2) \to \cdots \to H^\bullet(X_{n-1}; \mathbb{F}_2) \to H^\bullet(X_0; \mathbb{F}_2)$$
Steenrod barcodes

Given a filtered simplicial complex X

$$X_0 \to X_1 \to \cdots \to X_n.$$

Cohomology induces a persistent module, its barcode is a summary of how Betti numbers are consecutively shared.

A cohomology operation induces an endomorphism

$$
\begin{align*}
H^\bullet(X_n; \mathbb{F}_2) &\to \cdots \to H^\bullet(X_{n-1}; \mathbb{F}_2) \to H^\bullet(X_0; \mathbb{F}_2) \\
\xrightarrow{Sq^k} &\xrightarrow{Sq^k} \xrightarrow{Sq^k}
\end{align*}
$$

With the support of K. Hess-Bellwald, jointly with U. Lupo and G. Tauzin from giotto-tda's team we developed steenroder.
Steenrod barcodes

Given a filtered simplicial complex X

$$X_0 \to X_1 \to \cdots \to X_n.$$

Cohomology induces a persistent module, its barcode is a summary of how Betti numbers are consecutively shared.

A cohomology operation induces an endomorphism

$$H^\bullet(X_n; \mathbb{F}_2) \to \cdots \to H^\bullet(X_{n-1}; \mathbb{F}_2) \to H^\bullet(X_0; \mathbb{F}_2)$$

The Sq^k-barcode of X is the barcode of $\text{img } Sq^k$.

With the support of K. Hess-Bellwald, jointly with U. Lupo and G. Tauzin from giotto-tda’s team we developed steenroder.
Steenrod barcodes

Given a filtered simplicial complex X

\[X_0 \to X_1 \to \cdots \to X_n. \]

Cohomology induces a persistent module, its barcode is a summary of how Betti numbers are consecutively shared.

A cohomology operation induces an endomorphism

\[H^\bullet(X_n; \mathbb{F}_2) \to \cdots \to H^\bullet(X_{n-1}; \mathbb{F}_2) \to H^\bullet(X_0; \mathbb{F}_2) \]

\[\xymatrix{ H^\bullet(X_n; \mathbb{F}_2) \ar[r] & \cdots \ar[r] & H^\bullet(X_{n-1}; \mathbb{F}_2) \ar[r] & H^\bullet(X_0; \mathbb{F}_2) \ar[u]^{Sq^k} } \]

The Sq^k-barcode of X is the barcode of $\text{img } Sq^k$.

With the support of K. Hess-Bellwald, jointly with U. Lupo and G. Tauzin from giotto-tda’s team we developed steenroder.
Comparing persistent Sq^2-modules
Comparing persistent Sq^2-modules

Filtrations of the cone on the suspension of $S^2 \vee S^4$ and $\mathbb{C}P^2$.

img(Sq^2) ∩ H_4

H_4 (C \Sigma C_\mathbb{P}^2)
Comparing persistent Sq^2-modules

Filtrations of the cone on the suspension of $S^2 \vee S^4$ and $\mathbb{C}P^2$.

(a) $C \Sigma(S^2 \vee S^4)$

(b) $C \Sigma \mathbb{C}P^2$
Space of conformations of C_8H_{16}
Space of conformations of $C_{8}H_{16}$

Points in \mathbb{R}^{24} (positions of 8 carbons in \mathbb{R}^{3})
Space of conformations of $C_{8}H_{16}$

Points in \mathbb{R}^{24} (positions of 8 carbons in \mathbb{R}^{3})

Computing Sq^{1} barcode of a “smooth component” of this point cloud

Consistent with a Klein bottle component.
More on cup-i constructions

\begin{itemize}
\item Theorem (Med.)
\end{itemize}

All cup-i constructions in the literature are equal up isomorphism:

\[\Delta \sim \Delta' \iff \forall i \in \mathbb{N}, \Delta_i = \Delta'_i \lor \Delta_i = T \Delta'_i. \] (Proven via an axiomatic characterization.)

\begin{itemize}
\item Theorem (Cantero-Moran)
\end{itemize}

Adaptation of the new cup-i formulas to define operations in Khovanov homology of knots and links.

\begin{itemize}
\item Theorem (Med.)
\end{itemize}

Steenrod's cup-i construction defines the nerve of higher categories.

\begin{itemize}
\item Theorem (Laplante-Anfossi–Med.–Vallette)
\end{itemize}

Let $P \subset \mathbb{R}^n$ be an n-dim convex polytope. A generic orthogonal ordered basis of \mathbb{R}^n defines a cellular cup-i construction $S_\infty \times P \to P \times P$.

\begin{itemize}
\item Theorem (Med.)
\end{itemize}

Sheaves on a simplicial complex X fully faithfully modeled by comodules over Steenrod cup-i coalgebra $\mathbb{C}(X)$ using the Ranicki–Weiss assembly.
Theorem (Med.)
All cup-i constructions in the literature are equal up to isomorphism:

$$\triangle \sim \triangle' \iff \forall i \in \mathbb{N}, \triangle_i = \triangle'_i \lor \triangle_i = T\triangle'_i.$$

(Proven via an axiomatic characterization.)
More on cup-i constructions

Theorem (Med.)
All cup-i constructions in the literature are equal up to isomorphism:

$$\Delta \sim \Delta' \iff \forall i \in \mathbb{N}, \Delta_i = \Delta'_i \lor \Delta_i = T\Delta'_i.$$

(Proven via an axiomatic characterization.)

Theorem (Cantero-Morán)
Adaptation of the new cup-i formulas to define operations in Khovanov homology of knots and links.
More on cup-\(i\) constructions

Theorem (Med.)
All cup-\(i\) constructions in the literature are equal up isomorphism:

\[
\triangle \sim \triangle' \iff \forall i \in \mathbb{N}, \; \triangle_i = \triangle'_i \lor \triangle_i = T\triangle'_i.
\]

(Proven via an axiomatic characterization.)

Theorem (Cantero-Morán)
Adaptation of the new cup-\(i\) formulas to define operations in Khovanov homology of knots and links.

Theorem (Med.)
Steenrod’s cup-\(i\) construction defines the nerve of higher categories.
More on cup-\(i\) constructions

Theorem (Med.)
All cup-\(i\) constructions in the literature are equal up isomorphism:
\[
\triangle \sim \triangle' \iff \forall i \in \mathbb{N}, \, \triangle_i = \triangle_i' \land \triangle_i = T\triangle_i'.
\]
(Proven via an axiomatic characterization.)

Theorem (Cantero-Morán)
Adaptation of the new cup-\(i\) formulas to define operations in Khovanov homology of knots and links.

Theorem (Med.)
Steenrod’s cup-\(i\) construction defines the nerve of higher categories.

Theorem (Laplante-Anfossi–Med.–Vallette)
Let \(P \subset \mathbb{R}^n\) be an \(n\)-dim convex polytope. A generic orthogonal ordered basis of \(\mathbb{R}^n\) defines a cellular cup-\(i\) construction \(S^\infty \times P \to P \times P\).
More on cup-\(i\) constructions

Theorem (Med.)
All cup-\(i\) constructions in the literature are equal up isomorphism:
\[\triangle \sim \triangle' \iff \forall i \in \mathbb{N}, \ \triangle_i = \triangle'_i \lor \triangle_i = T \triangle'_i. \]
(Proven via an axiomatic characterization.)

Theorem (Cantero-Morán)
Adaptation of the new cup-\(i\) formulas to define operations in Khovanov homology of knots and links.

Theorem (Med.)
Steenrod’s cup-\(i\) construction defines the nerve of higher categories.

Theorem (Laplante-Anfossi–Med.–Vallette)
Let \(P \subset \mathbb{R}^n\) be an \(n\)-dim convex polytope. A generic orthogonal ordered basis of \(\mathbb{R}^n\) defines a cellular cup-\(i\) construction \(S^\infty \times P \to P \times P\).

Theorem (Med.)
Sheaves on a simplicial complex \(X\) fully faithfully modeled by comodules over Steenrod cup-\(i\) coalgebra \(C(X)\) using the Ranicki–Weiss assembly.
Relations

There are two main Steenrod square relations:

- **Cartan**
 \[Sq^k(\alpha \beta) = \sum_{i+j=k} Sq^i(\alpha) Sq^j(\beta) \]

- **Adem**
 \[Sq^i Sq^j = \left\lfloor \frac{i}{2} \right\rfloor \sum_{k=0} (j-k-1)(i-2k) Sq^{i+j-k} \]

Construction (Brumfiel–Med.–Morgan)
Explicit cochains witnessing these relations at the cochain level.

Application (Gaiotto, Kapustin, Thorngren and others)
Classification of (low dim. symm. protected fermionic) top. phases.

Vague idea
Cochains as fields on triangulated spacetime with actions defined using cup-i products and these secondary structures.
Relations

There are two main Steenrod square relations:
There are two main Steenrod square relations:

Cartan

\[Sq^k ([\alpha][\beta]) = \sum_{i+j=k} Sq^i ([\alpha]) Sq^j ([\beta]). \]
There are two main Steenrod square relations:

Cartan

\[\text{Sq}^k ([\alpha][\beta]) = \sum_{i+j=k} \text{Sq}^i ([\alpha]) \text{Sq}^j ([\beta]). \]

Adem

\[\text{Sq}^i \text{Sq}^j = \sum_{k=0}^{[i/2]} \binom{j - k - 1}{i - 2k} \text{Sq}^{i+j-k} \text{Sq}^k. \]
Relations

There are two main Steenrod square relations:

Cartan

\[\text{Sq}^k ([\alpha][\beta]) = \sum_{i+j=k} \text{Sq}^i ([\alpha]) \text{Sq}^j ([\beta]). \]

Adem

\[\text{Sq}^i \text{Sq}^j = \left\lfloor \frac{i}{2} \right\rfloor \sum_{k=0}^{[i/2]} \binom{j-k-1}{i-2k} \text{Sq}^{i+j-k} \text{Sq}^k. \]

Construction (Brumfiel–Med.–Morgan)

Explicit cochains witnessing these relations at the cochain level.
Relations

There are two main Steenrod square relations:

Cartan

\[\text{Sq}^k ([\alpha][\beta]) = \sum_{i+j=k} \text{Sq}^i ([\alpha]) \text{Sq}^j ([\beta]). \]

Adem

\[\text{Sq}^i \text{Sq}^j = \sum_{k=0}^{\lfloor i/2 \rfloor} \binom{j-k-1}{i-2k} \text{Sq}^{i+j-k} \text{Sq}^k. \]

Construction (Brumfiel–Med.–Morgan)
Explicit cochains witnessing these relations at the cochain level.

Application (Gaiotto, Kapustin, Thorngren and others)
Classification of (low dim. symm. protected fermionic) top. phases.
Relations

There are two main Steenrod square relations:

Cartan
\[
Sq^k ([\alpha][\beta]) = \sum_{i+j=k} Sq^i ([\alpha]) Sq^j ([\beta]).
\]

Adem
\[
Sq^i Sq^j = \sum_{k=0}^{[i/2]} \binom{j - k - 1}{i - 2k} Sq^{i+j-k} Sq^k.
\]

Construction (Brumfiel–Med.–Morgan)
Explicit cochains witnessing these relations at the cochain level.

Application (Gaiotto, Kapustin, Thorngren and others)
Classification of (low dim. symm. protected fermionic) top. phases.

Vague idea
Cochains as fields on triangulated spacetime with actions defined using cup-i products and these secondary structures.
Operations at odd primes

Steenrod squares come from the symmetry of the binary diagonal. Steenrod, and more generally May, also defined operations $P^k: H^\ast(X; \mathbb{F}_p) \to H^\ast(X; \mathbb{F}_p)$ from the symmetry of the diagonal $X \to X \times \cdots \times X$.

Note: indirect group homology definition. No generalizations of cup-i.

Construction (Kaufmann-Med.)

Explicit cup-(p,i) coproducts defining these operations.

Example

Using the computer algebra system ComCH we have

\[
\Delta^3,2[0,1,2] = \Delta^1[0,1][0,1,2][0,1] + \Delta^2[0,2][0,1] + \Delta^1[0,2][0,2][0,1,2] - \Delta^2[0,1,2][0,1,2][1] - \Delta^1[0,2][0,1,2][1,2] + \Delta^2[0,1,2][1,2][1,2] - \Delta^1[0,1][1,2][0,1,2] - \Delta^3[2][0,1,2] - \Delta^2[0][0,1,2][0,1,2]
\]
Steenrod squares come from the symmetry of the binary diagonal.

\[\Delta^3,2[0,1,2] = \Delta \Delta^2[0,1] + \Delta^2[0,1,2] + \Delta^2[0,2] - \Delta^2[0,1,2][1] - \Delta^2[0,2][1,2] + \Delta^2[1,2][1,2] - \Delta[0,1][1,2][0,1,2] - \Delta^2[2][0,1,2] - \Delta[0][0,1,2][0,1,2] \]
Operations at odd primes

Steenrod squares come from the symmetry of the binary diagonal. Steenrod, and more generally May, also defined operations

\[P_k: H^\bullet(X; \mathbb{F}_p) \to H^\bullet(X; \mathbb{F}_p) \]

from the symmetry of diagonal \(X \to X \times \cdots \times X \).
Steenrod squares come from the symmetry of the binary diagonal.

Steenrod, and more generally May, also defined operations

\[P_k : H^\bullet(X; \mathbb{F}_p) \rightarrow H^\bullet(X; \mathbb{F}_p) \]

from the symmetry of diagonal \(X \rightarrow X \times \cdots \times X \).

Note: indirect group homology definition. No generalizations of cup-\(i \).
Operations at odd primes

Steenrod squares come from the symmetry of the **binary** diagonal.

Steenrod, and more generally May, also defined operations

\[P_k : H^\bullet(X; \mathbb{F}_p) \to H^\bullet(X; \mathbb{F}_p) \]

from the symmetry of diagonal \(X \to X \times \cdots \times X \).

Note: indirect group homology definition. No generalizations of cup-\(i \).

Construction (Kaufmann-Med.)

Explicit cup-(\(p, i \)) coproducts defining these operations.
Operations at odd primes

Steenrod squares come from the symmetry of the **binary** diagonal.

Steenrod, and more generally May, also defined operations

\[P_k : H^\bullet(X; \mathbb{F}_p) \rightarrow H^\bullet(X; \mathbb{F}_p) \]

from the symmetry of diagonal \(X \rightarrow X \times \cdots \times X \).

Note: indirect group homology definition. No generalizations of cup-\(i \).

Construction (Kaufmann-Med.)

Explicit cup-(\(p, i \)) coproducts defining these operations.

Example

Using the computer algebra system **ComCH** we have \(\Delta_{3,2}[0,1,2] = \)

\[- [0,1] [0,1,2] [0,1] + [0,1,2] [0,2] [0,1] + [0,2] [0,2] [0,1,2] \\
- [0,1,2] [0,1,2] [1] - [0,2] [0,1,2] [1,2] + [0,1,2] [1,2] [1,2] \\
- [0,1] [1,2] [0,1,2] - [0,1,2] [2] [0,1,2] - [0] [0,1,2] [0,1,2] \]
A more abstract viewpoint

Operads control algebraic structures. The operad C controls cocommutative and coassociative coalgebras. An E_∞-operad is an S-cofibrant resolution of C. Controls coalgebras cocommutative and coassociative up to coherent homotopies. Fact: Fully deriving its diagonal map, the chains of a space form an E_∞-coalgebra. Principle (Quillen, Sullivan, Mandell, ...): All homotopy information of spaces is in this algebraic model. Question: How explicit can this E_∞-structure be made?
A more abstract viewpoint

Operads control algebraic structures.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.

An E_∞-operad is an S-cofibrant resolution of Com.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.

An E_∞-operad is an \mathbb{S}-cofibrant resolution of Com.

Controls coalgebras cocomm. and coassoc. up to coherent homotopies.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.

An E_∞-operad is an S-cofibrant resolution of Com.

Controls coalgebras cocomm. and coassoc. up to coherent homotopies.

Fact: Fully deriving its diagonal map, the chains of a space form an E_∞-coalgebra.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.

An E_∞-operad is an S-cofibrant resolution of Com.

Controls coalgebras cocomm. and coassoc. up to coherent homotopies.

Fact: Fully deriving its diagonal map, the chains of a space form an E_∞-coalgebra.

Principle (Quillen, Sullivan, Mandell, ...): All homotopy information of spaces is in this algebraic model.
A more abstract viewpoint

Operads control algebraic structures.

The operad Com controls cocommutative and coassociative coalgebras.

An E_∞-operad is an \mathcal{S}-cofibrant resolution of Com.

Controls coalgebras cocomm. and coassoc. up to coherent homotopies.

Fact: Fully deriving its diagonal map, the chains of a space form an E_∞-coalgebra.

Principle (Quillen, Sullivan, Mandell, ...):
All homotopy information of spaces is in this algebraic model.

Question: How explicit can this E_∞-structure be made?
Explicit E_{∞}-structure on (co)chains
Explicit E_∞-structure on (co)chains

Theorem (Med.)
The collection of maps $C(\Delta^n) \rightarrow C(\Delta^n)^\otimes r$ obtained from compositions of

$$\Delta: C(\Delta^n) \rightarrow C(\Delta^n)^\otimes 2$$ (AW diagonal)

$$*: C(\Delta^n)^\otimes 2 \rightarrow C(\Delta^n)$$ (Join map)

defines an E_∞-coalgebra on simplicial chains.
Explicit E_∞-structure on (co)chains

Theorem (Med.)
The collection of maps $C(\Delta^n) \to C(\Delta^n)^{\otimes r}$ obtained from compositions of

$$\Delta: C(\Delta^n) \to C(\Delta^n)^{\otimes 2} \quad \text{(AW diagonal)}$$

$$\ast: C(\Delta^n)^{\otimes 2} \to C(\Delta^n) \quad \text{(Join map)}$$

defines an E_∞-coalgebra on simplicial chains.

Join map

\[
\begin{array}{c}
\begin{array}{c}
\bullet 0 \\
\bullet 1 \\
\bullet 2
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
\begin{array}{c}
\bullet 0 \\
\bullet 1 \\
\bullet 2
\end{array}
\end{array}
\ast
\begin{array}{c}
\begin{array}{c}
\bullet 0 \\
\bullet 1 \\
\bullet 2
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
\begin{array}{c}
\bullet 0 \\
\bullet 1 \\
\bullet 2
\end{array}
\end{array}
\]

Other versions
1) Cubical (Kaufmann–Med.)
2) Multisimplicial (Med.–Pizzi–Salvatore).
Explicit E_∞-structure on (co)chains

Theorem (Med.)
The collection of maps $C(\Delta^n) \to C(\Delta^n)^{\otimes r}$ obtained from compositions of

$\Delta : C(\Delta^n) \to C(\Delta^n)^{\otimes 2}$ \hspace{1cm} (AW diagonal)

$\ast : C(\Delta^n)^{\otimes 2} \to C(\Delta^n)$ \hspace{1cm} (Join map)

defines an E_∞-coalgebra on simplicial chains.

Join map

Other versions
1) Cubical (Kaufmann–Med.)
2) Multisimplicial (Med.–Pizzi–Salvatore).
A finitely presented \mathcal{E}_∞-prop
A finitely presented E_∞-prop

Consider the prop \mathcal{M} generated by

\[
\begin{array}{c}
1 \\
\bullet \quad 1 \quad 2 \quad \begin{array}{c}
1 \\
\downarrow \quad \downarrow
\end{array}
\end{array}
\]

in degrees 0, 0 & 1 with non-zero boundary

\[\partial \Upsilon = \downarrow \downarrow - \downarrow \downarrow\]

and relators

\[
\begin{array}{c}
\quad = \quad = \\
\bullet \quad \bullet \quad \bullet
\end{array}
\]

and

\[\Upsilon = 0.\]
A finitely presented E_∞-prop

Consider the prop \mathcal{M} generated by

\begin{align*}
\begin{array}{ccc}
 & 1 \\
\downarrow & & \downarrow \\
1 & 2 & 1^2
\end{array}
\end{align*}

in degrees 0, 0 & 1 with non-zero boundary

$$\partial \Upsilon = \begin{array}{c} \begin{array}{c} \downarrow \end{array} \\
\begin{array}{c} \downarrow \\
\end{array} \end{array}$$

and relators

$$\begin{array}{ccc}
\begin{array}{c} \downarrow \end{array} &=& \begin{array}{c} \downarrow \end{array} \\
\begin{array}{c} \downarrow \end{array} &=& \begin{array}{c} \downarrow \end{array} \\
\Upsilon &=& 0.
\end{array}$$

Theorem (Med.)
The operad associated to \mathcal{M}, defined by

$$U(\mathcal{M}) = \{ \mathcal{M}(1, r) \}_{r \geq 1},$$

is a (cofibrant and Hopf) E_∞-operad.
Proof (time permitting)

Basic case: $M(s,0) \sim = \mathbb{Z}\{1 \ldots s\}$

Contraction: $\partial \circ h = \text{id} - p \circ i + h \circ \partial M(s,r - 1)$

Then $(\partial \circ h)_{s \rightarrow r} = \partial_{s \rightarrow r} = s_r - 1 + (h \circ \partial)_{s \rightarrow r}$
Proof (time permitting)

Basic case: $\mathcal{M}(s, 0) \cong \mathbb{Z}\{\frac{1}{\cdot}^{s}\}$
Proof (time permitting)

Basic case: $\mathcal{M}(s, 0) \cong \mathbb{Z}\{ \cdot^s \cdot \}$

Contraction: $\partial \circ h = \text{id} - p \circ i + h \circ \partial$

\[\begin{align*}
\mathcal{M}(s, r - 1) &\xleftarrow{i} \mathcal{M}(s, r) \xrightarrow{p} \mathcal{M}(s, r) &\circlearrowleft h
\end{align*}\]
Proof (time permitting)

Basic case: $\mathcal{M}(s, 0) \cong \mathbb{Z}\{\frac{1}{\cdots}\}$

Contraction: $\partial \circ h = \text{id} - p \circ i + h \circ \partial$

$$\mathcal{M}(s, r - 1) \xleftarrow{i} \xrightarrow{p} \mathcal{M}(s, r) \xrightarrow{h}$$
Proof (time permitting)

Basic case: \(\mathcal{M}(s, 0) \cong \mathbb{Z}\{\overline{1^s}\} \)

Contraction: \(\partial \circ h = \text{id} - p \circ i + h \circ \partial \)

\[\begin{array}{cccc}
\mathcal{M}(s, r - 1) & \xrightarrow{i} & \mathcal{M}(s, r) & \xrightarrow{h} \\
\begin{array}{c}
1 \\
\vdots \\
1 \quad r - 1
\end{array} & \quad \xrightarrow{p} & \begin{array}{c}
1 \\
\vdots \\
1 \quad 2 \quad r
\end{array}& \\
\end{array} \]

Then

\[(\partial \circ h) \]

\[\begin{array}{c}
1 \\
\vdots \\
1 \quad r
\end{array} \]
Proof (time permitting)

Basic case: $\mathcal{M}(s, 0) \cong \mathbb{Z}\{\ldots 1 \ldots s\}$

Contraction: $\partial \circ h = \text{id} - p \circ i + h \circ \partial$

Then

$$(\partial \circ h) \begin{array}{c} 1 \\ s \\ \vdots \\ r \end{array} = \partial \begin{array}{c} 1 \\ s \\ \vdots \\ r \end{array}$$
Proof (time permitting)

Basic case: \(\mathcal{M}(s, 0) \cong \mathbb{Z} \{ \cdot \ldots \cdot \} \)

Contraction: \(\partial \circ h = \text{id} - p \circ i + h \circ \partial \)

\[
\mathcal{M}(s, r - 1) \xrightarrow{i} \mathcal{M}(s, r) \xrightarrow{\partial} h
\]

Then

\[
(\partial \circ h) = \partial \left(\begin{array}{c}
\begin{array}{c}
1 \\
1 \\
r - 1
\end{array}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
s \\
s \\
1
\end{array}
\end{array} \right) = \begin{array}{c}
\begin{array}{c}
1 \\
1 \\
r - 1
\end{array}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
s \\
s \\
1
\end{array}
\end{array} - \begin{array}{c}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
s \\
s \\
1
\end{array}
\end{array} + (h \circ \partial) \begin{array}{c}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
1 \\
1 \\
r
\end{array}
\begin{array}{c}
s \\
s \\
1
\end{array}
\end{array}
\]
Proof (time permitting)

Basic case: \(\mathcal{M}(s, 0) \cong \mathbb{Z}\{ \begin{array}{c} 1 \\ \vdots \\ s \end{array} \} \)

Contraction: \(\partial \circ h = \text{id} - p \circ i + h \circ \partial \)

\[
\mathcal{M}(s, r - 1) \xleftarrow{i} \xrightarrow{p} \mathcal{M}(s, r)
\]

Then

\[
(\partial \circ h) = \partial \left(\begin{array}{c} 1 \\ 1 \\ s \\ 1 \\ r \end{array} \right) - \begin{array}{c} 1 \\ 1 \\ s \\ 1 \\ r \end{array} + (h \circ \partial) = (\text{id} - i \circ p + h \circ \partial)
\]
Two E_∞-bialgebra models for loop spaces
Two E_∞-bialgebra models for loop spaces

Construction (Adams)

Based space (X, x)
Two E_∞-bialgebra models for loop spaces

Construction (Adams)

Based space (X, x)

\[\downarrow \]

Two algebras and a q-iso of algebras:

\[\Omega S^\triangle (X, x) \xrightarrow{\theta X} S^\square (\Omega_x X) \]

Cobar const. on based simplicial sing. chains
Cubical sing. chains on based loop space
Two E_∞-bialgebra models for loop spaces

Construction (Adams)

Based space (X, x)

\[\Downarrow \]

Two algebras and a q-iso of algebras:

\[\Omega S^\Delta (X, x) \xrightarrow{\theta_X} S^\Box (\Omega_x X) \]

Cobar const. on based simplicial sing. chains

Cubical sing. chains on based loop space

Theorem (Baues)

θ_X is a map of bialgebras.
Two E_∞-bialgebra models for loop spaces

Construction (Adams)

Based space (X, x)

\downarrow

Two algebras and a q-iso of algebras:

$\Omega S^\Delta (X, x) \xrightarrow{\theta_X} S^\square (\Omega_x X)$

Cobar const. on based simplicial sing. chains

Cubical sing. chains on based loop space

Theorem (Baues)

θ_X is a map of bialgebras.

Theorem (Med.–Rivera)

θ_X is a map of E_∞-bialgebras.
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used "concretely."

Today's focus
The algebro-homotopical diagonal of spaces.

I. Steenrod cup-(p,i)coproducts
Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.

Future
Incorporate cup-(p,i)coproducts.

II. Finitely presented prop M modeling E∞ Applications
Adams cobar as an E∞-bialgebra model of based loop spaces.

Future
Double and free loop spaces.
Slogan
Homotopy theory requires additional structure to be used “concretely.”
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.

I. Steenrod cup-i coproducts
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used "concretely."

Today’s focus
The algebro-homotopical diagonal of spaces.

I. Steenrod cup-i coproducts

Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.

1. Steenrod cup-\(i\) coproducts

Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.

Future
Incorporate cup-\((p, i)\) coproducts.
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.

I. Steenrod cup-\(i\) coproducts

Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.

Future
Incorporate cup-\((p, i)\) coproducts.

II. Finitely presented prop \(\mathcal{M}\) modeling \(E_\infty\)
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.

I. Steenrod coproducts

Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.

Future
Incorporate cup-\((p, i)\) coproducts.

II. Finitely presented prop \(\mathcal{M}\) modeling \(E_\infty\)

Application
Adams cobar as an \(E_\infty\)-bialgebra model of based loop spaces.
Conclusions and future directions

Slogan
Homotopy theory requires additional structure to be used “concretely.”

Today’s focus
The algebro-homotopical diagonal of spaces.

I. Steenrod cup-i coproducts

Applications
Steenrod barcodes, knot invariants, lattice TFTs, K- and L-theory, connections to: higher categories, convex geometry.

Future
Incorporate cup-(p, i) coproducts.

II. Finitely presented prop \mathcal{M} modeling E_∞

Application
Adams cobar as an E_∞-bialgebra model of based loop spaces.

Future
Double and free loop spaces.
Happy birthday Gunnar!