Cancers behave like complex systems and are comprised of multiple distinct cell populations and structural and chemical signaling components. These elements of tumor microenvironments are not uniform across the tumor but instead vary in both space and time to sustain and promote disease as well as provide resistance to therapeutic interventions. Over the past decade, engineering and mathematics have begun to make critical contributions to our understanding of the physical and molecular mechanisms by which tumor microenvironments, and in particular the extracellular matrix, vasculature, and immune cell populations, influence disease progression. Thus, efforts to develop faithful quantitative approaches, mathematical models, and cutting edge technologies, which are critically needed to define elusive disease processes or address unmet clinical needs, has already begun. Indeed, from these contributions new technologies and therapeutic strategies have emerged. Yet, there remain critical gaps in our understanding of how heterogeneous tumor microenvironments drive disease and how we can successfully manipulate tumor microenvironments to bring novel therapeutic strategies.

ORGANIZERS
Daniel Billadeau, Mayo Clinic
Jasmine Foo, University of Minnesota
Paolo Provenzano, University of Minnesota

SPEAKERS
Alexander Anderson, Moffitt Cancer Center
David Beebe, University of Wisconsin, Madison
Daniel Billadeau, Mayo Clinic
Rolf Brekken, UT Southwestern Medical Center
Edna Cukierman, Fox Chase Cancer Center
Eugene Koay, University of Texas M. D. Anderson Cancer Center
Shelley Peyton, University of Massachusetts
Katarzyna (Kasia) Rejniak, Moffitt Cancer Center
Kaylee Schwertfeger, University of Minnesota
Elizabeth Wayne, Carnegie Mellon University

www.ima.umn.edu/2019-2020/SW4.6-8.20