Graph-based learning techniques have seen a wide range of applications in machine learning. Many forms of data are naturally modeled as a graph, such as networks of social media users, databases of images, states of large physical and biological systems, or collections of DNA sequences. Graph structure encodes interdependencies among constituents and provides for a convenient representation of the high-dimensional data. Patterns in the graph structure can be used to inform the design of scalable, graph-based learning algorithms in semi-supervised and unsupervised settings that deal with a limited amount of labeled information.

ORGANIZERS
Andrea Bertozzi, University of California, Los Angeles
Jeff Calder, University of Minnesota
Andrey Lokhov, Los Alamos National Laboratory
Matthew Thorpe, University of Manchester

SPEAKERS
Angelica I Aviles-Rivero, University of Cambridge
Zach Boyd, University of North Carolina, Chapel Hill
Guy Bresler, Massachusetts Institute of Technology
Leon Bungert, Friedrich-Alexander-Universität Erlangen-Nürnberg
Jalal Fadili, École Nationale Supérieure d’ingénieurs de Caen & Centre d Recherche (ENSICAEN)
Nicolas Garcia Trillos, University of Wisconsin, Madison
Franca Hoffmann, California Institute of Technology
Jure Leskovec, Stanford University
Yifei Lou, University of Texas at Dallas
Vince Lyzinski, University of Maryland
Simon Masnou, Université Claude-Bernard (Lyon I)
Ekaterina Rapinchuk, Michigan State University
Tim Roith, Friedrich-Alexander-Universität Erlangen-Nürnberg
Michaela Puck Rombach, University of Vermont
Carola Schoenlieb, University of Cambridge
Daniel Sussman, Boston University
Marc Vuffray, Los Alamos National Laboratory